Official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection

Related tags

Deep LearningACSL
Overview

Adaptive Class Suppression Loss for Long-Tail Object Detection

This repo is the official implementation for CVPR 2021 paper: Adaptive Class Suppression Loss for Long-Tail Object Detection. [Paper]

Framework

Requirements

1. Environment:

The requirements are exactly the same as BalancedGroupSoftmax. We tested on the following settings:

  • python 3.7
  • cuda 10.0
  • pytorch 1.2.0
  • torchvision 0.4.0
  • mmcv 0.2.14
conda create -n mmdet python=3.7 -y
conda activate mmdet

pip install cython
pip install numpy
pip install torch
pip install torchvision
pip install pycocotools
pip install matplotlib
pip install terminaltables

# download the source code of mmcv 0.2.14 from https://github.com/open-mmlab/mmcv/tree/v0.2.14
cd mmcv-0.2.14
pip install -v -e .
cd ../

git clone https://github.com/CASIA-IVA-Lab/ACSL.git

cd ACSL/lvis-api/
python setup.py develop

cd ../
python setup.py develop

2. Data:

a. For dataset images:

# Make sure you are in dir ACSL

mkdir data
cd data
mkdir lvis
mkdir pretrained_models
mkdir download_models
  • If you already have COCO2017 dataset, it will be great. Link train2017 and val2017 folders under folder lvis.
  • If you do not have COCO2017 dataset, please download: COCO train set and COCO val set and unzip these files and mv them under folder lvis.

b. For dataset annotations:

c. For pretrained models:

Download the corresponding pre-trained models below.

  • To train baseline models, we need models trained on COCO to initialize. Please download the corresponding COCO models at mmdetection model zoo.

  • Move these model files to ./data/pretrained_models/

d. For download_models:

Download the trained baseline models and ACSL models from BaiduYun, code is 2jp3

  • To train ACSL models, we need corresponding baseline models trained on LVIS to initialize and fix all parameters except for the last FC layer.

  • Move these model files to ./data/download_models/

After all these operations, the folder data should be like this:

    data
    ├── lvis
    │   ├── lvis_v0.5_train.json
    │   ├── lvis_v0.5_val.json
    │   ├── train2017
    │   │   ├── 000000100582.jpg
    │   │   ├── 000000102411.jpg
    │   │   ├── ......
    │   └── val2017
    │       ├── 000000062808.jpg
    │       ├── 000000119038.jpg
    │       ├── ......
    └── pretrained_models
    │       ├── faster_rcnn_r50_fpn_2x_20181010-443129e1.pth
    │       ├── ......
    └── download_models
            ├── R50-baseline.pth
            ├── ......

Training

Note: Please make sure that you have prepared the pretrained_models and the download_models and they have been put to the path specified in ${CONIFG_FILE}.

Use the following commands to train a model.

# Single GPU
python tools/train.py ${CONFIG_FILE}

# Multi GPU distributed training
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

All config files are under ./configs/.

  • ./configs/baselines: all baseline models.
  • ./configs/acsl: models for ACSL models.

For example, to train a ACSL model with Faster R-CNN R50-FPN:

# Single GPU
python tools/train.py configs/acsl/faster_rcnn_r50_fpn_1x_lvis_tunefc_acsl.py

# Multi GPU distributed training (for 8 gpus)
./tools/dist_train.sh configs/acsl/faster_rcnn_r50_fpn_1x_lvis_tunefc_acsl.py 8

Important: The default learning rate in config files is for 8 GPUs and 2 img/gpu (batch size = 8*2 = 16). According to the Linear Scaling Rule, you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., lr=0.01 for 4 GPUs * 2 img/gpu and lr=0.08 for 16 GPUs * 4 img/gpu. (Cited from mmdetection.)

Testing

Use the following commands to test a trained model.

# single gpu test
python tools/test_lvis.py \
 ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]

# multi-gpu testing
./tools/dist_test_lvis.sh \
 ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]
  • $RESULT_FILE: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.
  • $EVAL_METRICS: Items to be evaluated on the results. bbox for bounding box evaluation only. bbox segm for bounding box and mask evaluation.

For example (assume that you have finished the training of ACSL models.):

  • To evaluate the trained ACSL model with Faster R-CNN R50-FPN for object detection:
# single-gpu testing
python tools/test_lvis.py configs/acsl/faster_rcnn_r50_fpn_1x_lvis_tunefc_acsl.py \
 ./work_dirs/acsl/faster_rcnn_r50_fpn_1x_lvis_tunefc_acsl/epoch_12.pth \
  --out acsl_val_result.pkl --eval bbox

# multi-gpu testing (8 gpus)
./tools/dist_test_lvis.sh configs/acsl/faster_rcnn_r50_fpn_1x_lvis_tunefc_acsl.py \
./work_dirs/acsl/faster_rcnn_r50_fpn_1x_lvis_tunefc_acsl/epoch_12.pth 8 \
--out acsl_val_result.pkl --eval bbox

Results and models

Please refer to our paper for more details.

Method Models bbox mAP Config file Pretrained Model Model
baseline R50-FPN 21.18 file COCO-R50 R50-baseline
ACSL R50-FPN 26.36 file R50-baseline R50-acsl
baseline R101-FPN 22.36 file COCO-R101 R101-baseline
ACSL R101-FPN 27.49 file R101-baseline R101-acsl
baseline X101-FPN 24.70 file COCO-X101 X101-baseline
ACSL X101-FPN 28.93 file X101-baseline X101-acsl
baseline Cascade-R101 25.14 file COCO-Cas-R101 Cas-R101-baseline
ACSL Cascade-R101 29.71 file Cas-R101-baseline Cas-R101-acsl
baseline Cascade-X101 27.14 file COCO-Cas-X101 Cas-X101-baseline
ACSL Cascade-X101 31.47 file Cas-X101-baseline Cas-X101-acsl

Important: The code of BaiduYun is 2jp3

Citation

@inproceedings{wang2021adaptive,
  title={Adaptive Class Suppression Loss for Long-Tail Object Detection},
  author={Wang, Tong and Zhu, Yousong and Zhao, Chaoyang and Zeng, Wei and Wang, Jinqiao and Tang, Ming},
  journal={CVPR},
  year={2021}
}

Credit

This code is largely based on BalancedGroupSoftmax and mmdetection v1.0.rc0 and LVIS API.

Owner
CASIA-IVA-Lab
Image & Video Analysis Group, Institute of Automation, Chinese Academy of Sciences
CASIA-IVA-Lab
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
Codes for our IJCAI21 paper: Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization

DDAMS This is the pytorch code for our IJCAI 2021 paper Dialogue Discourse-Aware Graph Model and Data Augmentation for Meeting Summarization [Arxiv Pr

xcfeng 55 Dec 27, 2022
Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022