iBOT: Image BERT Pre-Training with Online Tokenizer

Related tags

Deep Learningibot
Overview

Image BERT Pre-Training with iBOT iBOT Icon

PWC PWC

Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

[arXiv] [BibTex]

iBOT framework

iBOT is a novel self-supervised pre-training framework that performs masked image modeling with self-distillation. iBOT pre-trained model shows local semantic features, which helps the model transfer well to downstream tasks both at a global scale and a local scale. For example, iBOT achieves strong performance on COCO object detection (51.4 box AP and 44.2 mask AP) and ADE20K semantic segmentation (50.0 mIoU) with vanilla ViT-B/16. iBOT can also extract semantic-meaningful local parts, like dog's ear 🐶 .

Update 🎉

  • December 2021 - Release the code and pre-trained models.
  • November 2021 - Release the pre-print on arXiv.

Installation

See installation structions for details.

Training

For a glimpse at the full documentation of iBOT pre-training, please run:

python main_ibot.py --help

iBOT Pre-Training with ViTs

To start the iBOT pre-training with Vision Transformer (ViT), simply run the following commands. JOB_NAME is a customized argument to distinguish different experiments and this will automatically save checkpoints into the seperate folders.

./run.sh imagenet_pretrain $JOB_NAME vit_{small,base,large} teacher {16,24,64}

The exact arguments to reproduce the models presented in our paper can be found in the args column of the pre-trained models. We also provide the logs for pre-training to help reproducibility.

For example, run iBOT with ViT-S/16 network on two nodes with 8 GPUs for 800 epochs with the following command. The resulting checkpoint should reach 75.2% on k-NN accuracy, 77.9% on linear probing accuracy, and 82.3% on fine-tuning accuracy.

./run.sh imagenet_pretrain $JOB_NAME vit_small teacher 16 \
  --teacher_temp 0.07 \
  --warmup_teacher_temp_epochs 30 \
  --norm_last_layer false \
  --epochs 800 \
  --batch_size_per_gpu 64 \
  --shared_head true \
  --out_dim 8192 \
  --local_crops_number 10 \
  --global_crops_scale 0.25 1 \
  --local_crops_scale 0.05 0.25 \
  --pred_ratio 0 0.3 \
  --pred_ratio_var 0 0.2

iBOT Pre-Training with Swins

This code also works for training iBOT on Swin Transformer (Swin). In the paper, we only conduct experiments on Swin-T with different window size:

./run.sh imagenet_pretrain $JOB_NAME swin_tiny teacher {16,40} \
  --patch_size 4 \
  --window_size {7,14}

For example, run iBOT with Swin-T/14 network on five nodes with 8 GPUS for 300 epochs with the following command. The resulting checkpoint should reach 76.2% on k-NN accuracy, 79.3% on linear probing accuracy.

./run.sh imagenet_pretrain $JOB_NAME swin_tiny teacher 40 \
  --teacher_temp 0.07 \
  --warmup_teacher_temp_epochs 30 \
  --norm_last_layer false \
  --epochs 300 \
  --batch_size_per_gpu 26 \
  --shared_head true \
  --out_dim 8192 \
  --local_crops_number 10 \
  --global_crops_scale 0.25 1 \
  --local_crops_scale 0.05 0.25 \
  --pred_ratio 0 0.3 \
  --pred_ratio_var 0 0.2 \
  --pred_start_epoch 50 \
  --patch_size 4 \
  --window_size 14 

Pre-Trained Models

You can choose to download only the weights of the pretrained backbone used for downstream tasks, and the full ckpt which contains backbone and projection head weights for both student and teacher networks. For the backbone, s denotes that the student network is selected while t denotes that the teacher network is selected.

Arch. Par. k-NN Lin. Fin. download
ViT-S/16 21M 74.5% 77.0% 82.3% backbone (t) full ckpt args logs
Swin-T/7 28M 75.3% 78.6% \ backbone (t) full ckpt args logs
Swin-T/14 28M 76.2% 79.3% \ backbone (t) full ckpt args logs
ViT-B/16 85M 77.1% 79.5% 83.8% backbone (t) full ckpt args logs

We also provide the ViT-{B,L}/16 model pre-trained on ImageNet-22K dataset.

Arch. Par. k-NN Lin. Fin. download
ViT-B/16 85M 71.1% 79.0% 84.4% backbone (s) full ckpt args logs
ViT-L/16 307M 70.6% 81.7% 86.3% backbone (s) full ckpt args logs

To extract the backbone from the full checkpoint by yourself, please run the following command where KEY being either student or teacher.

WEIGHT_FILE=$OUTPUT_DIR/checkpoint_$KEY.pth

python extract_backbone_weights.py \
  --checkpoint_key $KEY \
  $PRETRAINED \
  $WEIGHT_FILE \

Downstream Evaluation

See Evaluating iBOT on Downstream Tasks for details.

Property Analysis

See Analyzing iBOT's Properties for robustness test and visualizing self-attention map:

iBOT Global Pattern Layout

or extracting sparse correspondence pairs bwtween two images:

iBOT Global Pattern Layout

Extracting Semantic Patterns

We extract top-k numbered local classes based on patch tokens with their corresponding patches and contexts by running the following command. We indentify very diverse behaviour like shared low-level textures and high-level semantics.

python3 -m torch.distributed.launch --nproc_per_node=8 \
    --master_port=${MASTER_PORT:-29500} \
    analysis/extract_pattern/extract_topk_cluster.py \
    --pretrained_path $PRETRAINED \
    --checkpoint {student,teacher} \
    --type patch \
    --topk 36 \
    --patch_window 5 \
    --show_pics 20 \
    --arch vit_small \
    --save_path memory_bank_patch.pth \
    --data_path data/imagenet/val
iBOT Local Part-Level Pattern Layout

The script also supports to extract the patern layout on the [CLS] token, which is actually doing clustering or unsupervised classification. This property is not induced by MIM objective since we also spot this feature on DINO.

python3 -m torch.distributed.launch --nproc_per_node=8 \
    --master_port=${MASTER_PORT:-29500} \
    analysis/extract_pattern/extract_topk_cluster.py \
    --pretrained_path $PRETRAINED \
    --checkpoint {student,teacher} \
    --type cls \
    --topk 36 \
    --show_pics 20 \
    --arch vit_small \
    --save_path memory_bank_cls.pth \
    --data_path data/imagenet/val
iBOT Global Pattern Layout

Acknowledgement

This repository is built using the DINO repository and the BEiT repository.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Citing iBOT

If you find this repository useful, please consider giving a star and citation:

@article{zhou2021ibot,
  title={iBOT: Image BERT Pre-Training with Online Tokenizer},
  author={Zhou, Jinghao and Wei, Chen and Wang, Huiyu and Shen, Wei and Xie, Cihang and Yuille, Alan and Kong, Tao},
  journal={arXiv preprint arXiv:2111.07832},
  year={2021}
}
Owner
Bytedance Inc.
Bytedance Inc.
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
A python module for configuration of block devices

Blivet is a python module for system storage configuration. CI status Licence See COPYING Installation From Fedora repositories Blivet is available in

78 Dec 14, 2022
Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far Can We Go?" submitted to TOSEM

tosem2021-personality-rep-package Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far

Collaborative Development Group 1 Dec 13, 2021
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
[NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature"

IP-IRM [NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature". Codes will be relea

Wang Tan 67 Dec 24, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
Fortuitous Forgetting in Connectionist Networks

Fortuitous Forgetting in Connectionist Networks Introduction This repository includes reference code for the paper Fortuitous Forgetting in Connection

Hattie Zhou 14 Nov 26, 2022
基于Paddlepaddle复现yolov5,支持PaddleDetection接口

PaddleDetection yolov5 https://github.com/Sharpiless/PaddleDetection-Yolov5 简介 PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。 PaddleD

36 Jan 07, 2023
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
git《Self-Attention Attribution: Interpreting Information Interactions Inside Transformer》(AAAI 2021) GitHub:

Self-Attention Attribution This repository contains the implementation for AAAI-2021 paper Self-Attention Attribution: Interpreting Information Intera

60 Dec 29, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Daxuan 39 Dec 26, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022