iBOT: Image BERT Pre-Training with Online Tokenizer

Related tags

Deep Learningibot
Overview

Image BERT Pre-Training with iBOT iBOT Icon

PWC PWC

Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

[arXiv] [BibTex]

iBOT framework

iBOT is a novel self-supervised pre-training framework that performs masked image modeling with self-distillation. iBOT pre-trained model shows local semantic features, which helps the model transfer well to downstream tasks both at a global scale and a local scale. For example, iBOT achieves strong performance on COCO object detection (51.4 box AP and 44.2 mask AP) and ADE20K semantic segmentation (50.0 mIoU) with vanilla ViT-B/16. iBOT can also extract semantic-meaningful local parts, like dog's ear 🐶 .

Update 🎉

  • December 2021 - Release the code and pre-trained models.
  • November 2021 - Release the pre-print on arXiv.

Installation

See installation structions for details.

Training

For a glimpse at the full documentation of iBOT pre-training, please run:

python main_ibot.py --help

iBOT Pre-Training with ViTs

To start the iBOT pre-training with Vision Transformer (ViT), simply run the following commands. JOB_NAME is a customized argument to distinguish different experiments and this will automatically save checkpoints into the seperate folders.

./run.sh imagenet_pretrain $JOB_NAME vit_{small,base,large} teacher {16,24,64}

The exact arguments to reproduce the models presented in our paper can be found in the args column of the pre-trained models. We also provide the logs for pre-training to help reproducibility.

For example, run iBOT with ViT-S/16 network on two nodes with 8 GPUs for 800 epochs with the following command. The resulting checkpoint should reach 75.2% on k-NN accuracy, 77.9% on linear probing accuracy, and 82.3% on fine-tuning accuracy.

./run.sh imagenet_pretrain $JOB_NAME vit_small teacher 16 \
  --teacher_temp 0.07 \
  --warmup_teacher_temp_epochs 30 \
  --norm_last_layer false \
  --epochs 800 \
  --batch_size_per_gpu 64 \
  --shared_head true \
  --out_dim 8192 \
  --local_crops_number 10 \
  --global_crops_scale 0.25 1 \
  --local_crops_scale 0.05 0.25 \
  --pred_ratio 0 0.3 \
  --pred_ratio_var 0 0.2

iBOT Pre-Training with Swins

This code also works for training iBOT on Swin Transformer (Swin). In the paper, we only conduct experiments on Swin-T with different window size:

./run.sh imagenet_pretrain $JOB_NAME swin_tiny teacher {16,40} \
  --patch_size 4 \
  --window_size {7,14}

For example, run iBOT with Swin-T/14 network on five nodes with 8 GPUS for 300 epochs with the following command. The resulting checkpoint should reach 76.2% on k-NN accuracy, 79.3% on linear probing accuracy.

./run.sh imagenet_pretrain $JOB_NAME swin_tiny teacher 40 \
  --teacher_temp 0.07 \
  --warmup_teacher_temp_epochs 30 \
  --norm_last_layer false \
  --epochs 300 \
  --batch_size_per_gpu 26 \
  --shared_head true \
  --out_dim 8192 \
  --local_crops_number 10 \
  --global_crops_scale 0.25 1 \
  --local_crops_scale 0.05 0.25 \
  --pred_ratio 0 0.3 \
  --pred_ratio_var 0 0.2 \
  --pred_start_epoch 50 \
  --patch_size 4 \
  --window_size 14 

Pre-Trained Models

You can choose to download only the weights of the pretrained backbone used for downstream tasks, and the full ckpt which contains backbone and projection head weights for both student and teacher networks. For the backbone, s denotes that the student network is selected while t denotes that the teacher network is selected.

Arch. Par. k-NN Lin. Fin. download
ViT-S/16 21M 74.5% 77.0% 82.3% backbone (t) full ckpt args logs
Swin-T/7 28M 75.3% 78.6% \ backbone (t) full ckpt args logs
Swin-T/14 28M 76.2% 79.3% \ backbone (t) full ckpt args logs
ViT-B/16 85M 77.1% 79.5% 83.8% backbone (t) full ckpt args logs

We also provide the ViT-{B,L}/16 model pre-trained on ImageNet-22K dataset.

Arch. Par. k-NN Lin. Fin. download
ViT-B/16 85M 71.1% 79.0% 84.4% backbone (s) full ckpt args logs
ViT-L/16 307M 70.6% 81.7% 86.3% backbone (s) full ckpt args logs

To extract the backbone from the full checkpoint by yourself, please run the following command where KEY being either student or teacher.

WEIGHT_FILE=$OUTPUT_DIR/checkpoint_$KEY.pth

python extract_backbone_weights.py \
  --checkpoint_key $KEY \
  $PRETRAINED \
  $WEIGHT_FILE \

Downstream Evaluation

See Evaluating iBOT on Downstream Tasks for details.

Property Analysis

See Analyzing iBOT's Properties for robustness test and visualizing self-attention map:

iBOT Global Pattern Layout

or extracting sparse correspondence pairs bwtween two images:

iBOT Global Pattern Layout

Extracting Semantic Patterns

We extract top-k numbered local classes based on patch tokens with their corresponding patches and contexts by running the following command. We indentify very diverse behaviour like shared low-level textures and high-level semantics.

python3 -m torch.distributed.launch --nproc_per_node=8 \
    --master_port=${MASTER_PORT:-29500} \
    analysis/extract_pattern/extract_topk_cluster.py \
    --pretrained_path $PRETRAINED \
    --checkpoint {student,teacher} \
    --type patch \
    --topk 36 \
    --patch_window 5 \
    --show_pics 20 \
    --arch vit_small \
    --save_path memory_bank_patch.pth \
    --data_path data/imagenet/val
iBOT Local Part-Level Pattern Layout

The script also supports to extract the patern layout on the [CLS] token, which is actually doing clustering or unsupervised classification. This property is not induced by MIM objective since we also spot this feature on DINO.

python3 -m torch.distributed.launch --nproc_per_node=8 \
    --master_port=${MASTER_PORT:-29500} \
    analysis/extract_pattern/extract_topk_cluster.py \
    --pretrained_path $PRETRAINED \
    --checkpoint {student,teacher} \
    --type cls \
    --topk 36 \
    --show_pics 20 \
    --arch vit_small \
    --save_path memory_bank_cls.pth \
    --data_path data/imagenet/val
iBOT Global Pattern Layout

Acknowledgement

This repository is built using the DINO repository and the BEiT repository.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Citing iBOT

If you find this repository useful, please consider giving a star and citation:

@article{zhou2021ibot,
  title={iBOT: Image BERT Pre-Training with Online Tokenizer},
  author={Zhou, Jinghao and Wei, Chen and Wang, Huiyu and Shen, Wei and Xie, Cihang and Yuille, Alan and Kong, Tao},
  journal={arXiv preprint arXiv:2111.07832},
  year={2021}
}
Owner
Bytedance Inc.
Bytedance Inc.
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectious disease models: the COVID-19 case by Storvik et al

smc.covid smc.covid is an R package related to the paper A sequential Monte Carlo approach to estimate a time varying reproduction number in infectiou

0 Oct 15, 2021
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
Official Implementation of "Transformers Can Do Bayesian Inference"

Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var

AutoML-Freiburg-Hannover 103 Dec 25, 2022
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
This is a library for training and applying sparse fine-tunings with torch and transformers.

This is a library for training and applying sparse fine-tunings with torch and transformers. Please refer to our paper Composable Sparse Fine-Tuning f

Cambridge Language Technology Lab 37 Dec 30, 2022
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
ViSD4SA, a Vietnamese Span Detection for Aspect-based sentiment analysis dataset

UIT-ViSD4SA PACLIC 35 General Introduction This repository contains the data of the paper: Span Detection for Vietnamese Aspect-Based Sentiment Analys

Nguyễn Thị Thanh Kim 5 Nov 13, 2022