Classify music genre from a 10 second sound stream using a Neural Network.

Overview

MusicGenreClassification

MusicGenreClassification

Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University.

Featured in Medium.

Abstract

This paper discuss the task of classifying the music genre of a sound sample.

Introduction

When I decided to work on the field of sound processing I thought that genre classification is a parallel problem to the image classification. To my surprise I did not found too many works in deep learning that tackled this exact problem. One paper that did tackle this classification problem is Tao Feng’s paper [1] from the university of Illinois. I did learned a lot from this paper, but honestly, they results the paper presented were not impressive.

So I had to look on other, related but not exact papers. A very influential paper was Deep content-based music recommendation [2] This paper is about content-base music recommendation using deep learning techniques. The way they got the dataset, and the preprocessing they had done to the sound had really enlightened my implementation. Also, this paper was mentioned lately on “Spotify” blog [3]. Spotify recruited a deep learning intern that based on the above work implemented a music recommendation engine. His simple yet very efficient network made me think that Tao’s RBM was not the best approach and there for my implementation included a CNN instead like in the Spotify blog. One very important note is that Tao’s work published result only for 2,3 and 4 classes classification. Obviously he got really good result for 2 classes classification, but the more classes he tried to classify the poorer the result he got. My work classify the whole 10 classes challenge, a much more difficult task. A sub task for this project was to learn a new SDK for deep learning, I have been waiting for an opportunity to learn Google’s new TensorFlow[4]. This project is implemented in Python and the Machine Learning part is using TensorFlow.

The Dataset

Getting the dataset might be the most time consuming part of this work. Working with music is a big pain, every file is usually a couple of MBs, there are variety of qualities and parameters of recording (Number of frequencies, Bits per second, etc…). But the biggest pain is copyrighting, there are no legit famous songs dataset as they would cost money. Tao’s paper based on a dataset called GTZAN[5]. This dataset is quit small (100 songs per genre X 10 genres = overall 1,000 songs), and the copyright permission is questionable. This is from my perspective one of the reasons that held him from getting better results. So, I looked up for generating more data to learn from. Eventually I found MSD[6] dataset (Million Song Dataset). It is a freely-available collection of audio features and metadata for a million contemporary popular music tracks. Around 280 GB of pure metadata. There is a project on top of MSD called tagtraum[7] which classify MSD songs into genres. The problem now was to get the sound itself, here is where I got a little creative. I found that one of the tags every song have in the dataset is an id from a provider called 7Digital[8]. 7Digital is a SaaS provider for music application, it basically let you stream music for money. I signed up to 7Digital as a developer and after their approval i could access their API. Still any song stream costs money, But I found out that they are enabling to preview random 30 seconds of a song to the user before paying for them. This is more than enough for my deep learning task, So I wrote “previewDownloader.py” that downloads for every song in the MSD dataset a 30 sec preview. Unfortunately I had only my laptop for this mission, so I had to settle with only 1% of the dataset (around 2.8GB).

The genres I am classifying are:

  1. blues
  2. classical
  3. country
  4. disco
  5. hiphop
  6. jazz
  7. metal
  8. pop
  9. reggae
    10.rock

Music genre popularity

Preprocessing the data

Having a big data set isn't enough, in oppose to image tasks I cannot work straight on the raw sound sample, a quick calculation: 30 seconds × 22050 sample/sec- ond = 661500 length of vector, which would be heavy load for a convention machine learning method.

Following all the papers I read and researching a little on acoustic analysis, It is quit obvious that the industry is using Mel-frequency cepstral coefficients (MFCC) as the feature vector for the sound sample, I used librosa[9] implementation.

MFCCs are derived as follows:

  1. Take the Fourier transform of (a windowed excerpt of) a signal.
  2. Map the powers of the spectrum obtained above onto the mel scale, using triangular overlapping windows.
  3. Take the logs of the powers at each of the mel frequencies.
  4. Take the discrete cosine transform of the list of mel log powers, as if it were a signal.
  5. The MFCCs are the amplitudes of the resulting spectrum.

I had tried several window size and stride values, the best result I got was for size of 100ms and a stride of 40ms.

One more point was that Tao’s paper used MFCC features (step 5) while Sander used strait mel-frequencies (step 2).

MEL ppower over time

I tried both approaches and found out that I got extremely better results using just the mel-frequencies, but the trade-off was the training time of-course. Before continue to building a network I wanted to visualise the preprocessed data set, I implemented this through the t-SNE[10] algorithm.Below you can see the t-SNE graph for MFCC (step 5) and Mel-Frequencies (step 2):

t-SNE MFCC samples as genres

t-SNE mel-spectogram samples as genres

The Graph

After seeing the results Tao and Sander reached I decided to go with a convolu- tional neural network implementation. The network receive a 599 vector of mea-frequen- cy beans, each containing 128 frequencies which describe their window. The network consist with 3 hidden layers and between them I am doing a max pooling. Finally a fully connected layer and than softmax to end up with a 10 dimensional vector for our ten genre classes

Nural Network

I did implement another network for MFCC feature instead of mel-frequencies, the only differences are in the sizes (13 frequencies per window instead of 128).

Visualisation of various filters (from Sander’s paper):

Filters visualization

• Filter 14 seems to pick up vibrato singing. • Filter 242 picks up some kind of ringing ambience. • Filter 250 picks up vocal thirds, i.e. multiple singers singing the same thing, but the notes are a major third (4 semitones) apart. • Filter 253 picks up various types of bass drum sounds.

Results

As I explained in the introduction, the papers I based my work on did not solve the exact problem I did, for example Tao’s paper published results for classifying 2,3 and 4 classes (Genres).

Tao Feng's results

I did looked for benchmarks outside the deep learning field and I found a paper titled “A BENCHMARK DATASET FOR AUDIO CLASSIFICATION AND CLUSTERING” [11]. This paper benchmark a very similar task to mine, the genres it classifies: Blues, Electronic, Jazz, Pop, HipHop, Rock, Folk, Alternative, Funk.

Benchmark results

My results:

My results

Code

Documentation

• previewDownloader.py: USAGE: python previewDownloader.py [path to MSD data] This script iterate over all ‘.h5’ in a directory and download a 30 seconds sample from 7digital.

• preproccess.py: USAGE: python preproccess.py [path to MSD mp3 data] This script pre-processing the sound files. Calculating MFCC for a sliding window and saving the result in a ‘.pp’ file.

• formatInput.py: USAGE: python formatInput.py [path to MSD pp data] The script iterates over all ‘.pp’ files and generates ‘data’ and ‘labels’ that will be used as an input to the NN. Moreover, the script output a t-SNE graph at the end.

• train.py: USAGE: python train.py This script builds the neural network and feeds it with ‘data’ and ‘labels’. When it is done it will save ‘model.final’.

Complete Installation

References

[1] Tao Feng, Deep learning for music genre classification, University of Illinois. https://courses.engr.illinois.edu/ece544na/fa2014/Tao_Feng.pdf [2]Aar̈onvandenOord,SanderDieleman,BenjaminSchrauwen,Deepcontent- based music recommendation. http://papers.nips.cc/paper/5004-deep-content-based- music-recommendation.pdf [3] SANDER DIELEMAN, RECOMMENDING MUSIC ON SPOTIFY WITH DEEP LEARNING, AUGUST 05, 2014. http://benanne.github.io/2014/08/05/spotify-cnns.html [4] https://www.tensorflow.org [5] GTZAN Genre Collection. http://marsyasweb.appspot.com/download/ data_sets/ [6] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The Million Song Dataset. In Proceedings of the 12th International Society for Music Information Retrieval Conference (ISMIR 2011), 2011. http:// labrosa.ee.columbia.edu/millionsong/ [7] Hendrik Schreiber. Improving genre annotations for the million song dataset. In Proceedings of the 16th International Conference on Music Information Retrieval (IS- MIR), pages 241-247, 2015. http://www.tagtraum.com/msd_genre_datasets.html [8] https://www.7digital.com [9] https://github.com/bmcfee/librosa [10] http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html [11] Helge Homburg, Ingo Mierswa, Bu l̈ent Mo l̈ler, Katharina Morik and Michael Wurst, A BENCHMARK DATASET FOR AUDIO CLASSIFICATION AND CLUSTERING, University of Dortmund, AI Unit. http://sfb876.tu-dortmund.de/PublicPublicationFiles/ homburg_etal_2005a.pdf

Author

Matan Lachmish a.k.a The Big Fat Ninja The Big Fat Ninja
https://thebigfatninja.xyz

attribution

Icon made by Freepik from www.flaticon.com

License

MusicGenreClassification is available under the MIT license. See the LICENSE file for more info.

Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

NYU-VPR This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymiza

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 22 Sep 28, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022