Emotional conditioned music generation using transformer-based model.

Related tags

Deep LearningEMOPIA
Overview

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has been accepted by International Society for Music Information Retrieval Conference 2021.

  • Note: We release the transcribed MIDI files. As for the audio part, due to the copyright issue, we will only release the YouTube ID of the tracks and the timestamp of them. You might use open source crawler to get the audio file.

Use EMOPIA by MusPy

  1. install muspy
pip install muspy
  1. Use it in your script
import muspy

emopia = muspy.EMOPIADataset("data/emopia/", download_and_extract=True)
emopia.convert()
music = emopia[0]
print(music.annotations[0].annotation)

You can get the label of the piece of music:

{'emo_class': '1', 'YouTube_ID': '0vLPYiPN7qY', 'seg_id': '0'}
  • emo_class: ['1', '2', '3', '4']
  • YouTube_ID: the YouTube ID of this piece of music
  • seg_id: means this piece of music is the ith piece we take from this song. (zero-based).

For more usage please refer to MusPy.

Emotion Classification

For the classification models and codes, please refer to this repo.

Conditional Generation

Environment

  1. Install PyTorch and fast transformer:

    • torch==1.7.0 (Please install it according to your CUDA version.)

    • fast transformer :

      pip install --user pytorch-fast-transformers 
      

      or refer to the original repository

  2. Other requirements:

    pip install -r requirements.txt

Usage

Inference

  1. Download the checkpoints and put them into exp/

    • Manually:

    • By commend: (install gdown: pip install gdown)

      #baseline:
      gdown --id 1Q9vQYnNJ0hXBFwcxdWQgDNmzoW3MLl3h --output exp/baseline.zip
      
      # no-pretrained transformer
      gdown --id 1ZULJgBRu2Wb3jxFmGfAHP1v_tjoryFM7 --output exp/no-pretrained_transformer.zip
      
      # pretrained transformer
      gdown --id 19Seq18b2JNzOamEQMG1uarKjj27HJkHu --output exp/pretrained_transformer.zip
      
  2. Inference options:

  • num_songs: number of midis you want to generate.

  • out_dir: the folder where the generated midi will be saved. If not specified, midi files will be saved to exp/MODEL_YOU_USED/gen_midis/.

  • task_type: the task_type needs to be the same as the task specified during training.

    • '4-cls' for 4 class conditioning
    • 'Arousal' for only conditioning on arousal
    • 'Valence' for only conditioning on Valence
    • 'ignore' for not conditioning
  • emo_tag: the target class of emotion you want to assign.

    • If the task_type is '4-cls', emo_tag can be: 1,2,3,4, which refers to Q1, Q2, Q3, Q4.
    • If the task_type is 'Arousal', emo_tag can be: 1, 2. 1 for High arousal, 2 for Low arousal.
    • If the task_type is 'Valence', emo_tag can be: 1, 2. 1 for High Valence, 2 for Low Valence.
  1. Inference

    python main_cp.py --mode inference --task_type 4-cls --load_ckt CHECKPOINT_FOLDER --load_ckt_loss 25 --num_songs 10 --emo_tag 1 
    

Train the model by yourself

  1. Prepare the data follow the steps.

  2. training options:

  • exp_name: the folder name that the checkpoints will be saved.

  • data_parallel: use data_parallel to let the training process faster. (0: not use, 1: use)

  • task_type: the conditioning task:

    • '4-cls' for 4 class conditioning
    • 'Arousal' for only conditioning on arousal
    • 'Valence' for only conditioning on Valence
    • 'ignore' for not conditioning

    a. Only train on EMOPIA: (no-pretrained transformer in the paper)

      python main_cp.py --path_train_data emopia --exp_name YOUR_EXP_NAME --load_ckt none
    

    b. Pre-train the transformer on AILabs17k:

      python main_cp.py --path_train_data ailabs --exp_name YOUR_EXP_NAME --load_ckt none --task_type ignore
    

    c. fine-tune the transformer on EMOPIA: For example, you want to use the pre-trained model stored in 0309-1857 with loss= 30 to fine-tune:

      python main_cp.py --path_train_data emopia --exp_name YOUR_EXP_NAME --load_ckt 0309-1857 --load_ckt_loss 30
    

Baseline

  1. The baseline code is based on the work of Learning to Generate Music with Sentiment

  2. According to the author, the model works best when it is trained with 4096 neurons of LSTM, but takes 12 days for training. Therefore, due to the limit of computational resource, we used the size of 512 neurons instead of 4096.

  3. In order to use this as evaluation against our model, the target emotion classes is expanded to 4Q instead of just positive/negative.

Authors

The paper is a co-working project with Joann, SeungHeon and Nabin. This repository is mentained by Joann and me.

License

The EMOPIA dataset is released under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). It is provided primarily for research purposes and is prohibited to be used for commercial purposes. When sharing your result based on EMOPIA, any act that defames the original music owner is strictly prohibited.

The hand drawn piano in the logo comes from Adobe stock. The author is Burak. I purchased it under standard license.

Cite the dataset

@inproceedings{{EMOPIA},
         author = {Hung, Hsiao-Tzu and Ching, Joann and Doh, Seungheon and Kim, Nabin and Nam, Juhan and Yang, Yi-Hsuan},
         title = {{MOPIA}: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation},
         booktitle = {Proc. Int. Society for Music Information Retrieval Conf.},
         year = {2021}
}
Owner
hung anna
hung anna
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
Underwater industrial application yolov5m6

This project wins the intelligent algorithm contest finalist award and stands out from over 2000teams in China Underwater Robot Professional Contest, entering the final of China Underwater Robot Prof

8 Nov 09, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022