Emotional conditioned music generation using transformer-based model.

Related tags

Deep LearningEMOPIA
Overview

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has been accepted by International Society for Music Information Retrieval Conference 2021.

  • Note: We release the transcribed MIDI files. As for the audio part, due to the copyright issue, we will only release the YouTube ID of the tracks and the timestamp of them. You might use open source crawler to get the audio file.

Use EMOPIA by MusPy

  1. install muspy
pip install muspy
  1. Use it in your script
import muspy

emopia = muspy.EMOPIADataset("data/emopia/", download_and_extract=True)
emopia.convert()
music = emopia[0]
print(music.annotations[0].annotation)

You can get the label of the piece of music:

{'emo_class': '1', 'YouTube_ID': '0vLPYiPN7qY', 'seg_id': '0'}
  • emo_class: ['1', '2', '3', '4']
  • YouTube_ID: the YouTube ID of this piece of music
  • seg_id: means this piece of music is the ith piece we take from this song. (zero-based).

For more usage please refer to MusPy.

Emotion Classification

For the classification models and codes, please refer to this repo.

Conditional Generation

Environment

  1. Install PyTorch and fast transformer:

    • torch==1.7.0 (Please install it according to your CUDA version.)

    • fast transformer :

      pip install --user pytorch-fast-transformers 
      

      or refer to the original repository

  2. Other requirements:

    pip install -r requirements.txt

Usage

Inference

  1. Download the checkpoints and put them into exp/

    • Manually:

    • By commend: (install gdown: pip install gdown)

      #baseline:
      gdown --id 1Q9vQYnNJ0hXBFwcxdWQgDNmzoW3MLl3h --output exp/baseline.zip
      
      # no-pretrained transformer
      gdown --id 1ZULJgBRu2Wb3jxFmGfAHP1v_tjoryFM7 --output exp/no-pretrained_transformer.zip
      
      # pretrained transformer
      gdown --id 19Seq18b2JNzOamEQMG1uarKjj27HJkHu --output exp/pretrained_transformer.zip
      
  2. Inference options:

  • num_songs: number of midis you want to generate.

  • out_dir: the folder where the generated midi will be saved. If not specified, midi files will be saved to exp/MODEL_YOU_USED/gen_midis/.

  • task_type: the task_type needs to be the same as the task specified during training.

    • '4-cls' for 4 class conditioning
    • 'Arousal' for only conditioning on arousal
    • 'Valence' for only conditioning on Valence
    • 'ignore' for not conditioning
  • emo_tag: the target class of emotion you want to assign.

    • If the task_type is '4-cls', emo_tag can be: 1,2,3,4, which refers to Q1, Q2, Q3, Q4.
    • If the task_type is 'Arousal', emo_tag can be: 1, 2. 1 for High arousal, 2 for Low arousal.
    • If the task_type is 'Valence', emo_tag can be: 1, 2. 1 for High Valence, 2 for Low Valence.
  1. Inference

    python main_cp.py --mode inference --task_type 4-cls --load_ckt CHECKPOINT_FOLDER --load_ckt_loss 25 --num_songs 10 --emo_tag 1 
    

Train the model by yourself

  1. Prepare the data follow the steps.

  2. training options:

  • exp_name: the folder name that the checkpoints will be saved.

  • data_parallel: use data_parallel to let the training process faster. (0: not use, 1: use)

  • task_type: the conditioning task:

    • '4-cls' for 4 class conditioning
    • 'Arousal' for only conditioning on arousal
    • 'Valence' for only conditioning on Valence
    • 'ignore' for not conditioning

    a. Only train on EMOPIA: (no-pretrained transformer in the paper)

      python main_cp.py --path_train_data emopia --exp_name YOUR_EXP_NAME --load_ckt none
    

    b. Pre-train the transformer on AILabs17k:

      python main_cp.py --path_train_data ailabs --exp_name YOUR_EXP_NAME --load_ckt none --task_type ignore
    

    c. fine-tune the transformer on EMOPIA: For example, you want to use the pre-trained model stored in 0309-1857 with loss= 30 to fine-tune:

      python main_cp.py --path_train_data emopia --exp_name YOUR_EXP_NAME --load_ckt 0309-1857 --load_ckt_loss 30
    

Baseline

  1. The baseline code is based on the work of Learning to Generate Music with Sentiment

  2. According to the author, the model works best when it is trained with 4096 neurons of LSTM, but takes 12 days for training. Therefore, due to the limit of computational resource, we used the size of 512 neurons instead of 4096.

  3. In order to use this as evaluation against our model, the target emotion classes is expanded to 4Q instead of just positive/negative.

Authors

The paper is a co-working project with Joann, SeungHeon and Nabin. This repository is mentained by Joann and me.

License

The EMOPIA dataset is released under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0). It is provided primarily for research purposes and is prohibited to be used for commercial purposes. When sharing your result based on EMOPIA, any act that defames the original music owner is strictly prohibited.

The hand drawn piano in the logo comes from Adobe stock. The author is Burak. I purchased it under standard license.

Cite the dataset

@inproceedings{{EMOPIA},
         author = {Hung, Hsiao-Tzu and Ching, Joann and Doh, Seungheon and Kim, Nabin and Nam, Juhan and Yang, Yi-Hsuan},
         title = {{MOPIA}: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation},
         booktitle = {Proc. Int. Society for Music Information Retrieval Conf.},
         year = {2021}
}
Owner
hung anna
hung anna
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
Pytorch Lightning 1.2k Jan 06, 2023
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
Wordle Env: A Daily Word Environment for Reinforcement Learning

Wordle Env: A Daily Word Environment for Reinforcement Learning Setup Steps: git pull [email&#

2 Mar 28, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021