3D detection and tracking viewer (visualization) for kitti & waymo dataset

Overview

3D Detection & Tracking Viewer

This project was developed for view 3D object detection and tracking results. It supports rendering 3D bounding boxes as car models and rendering boxes on images.

Features

  • Rendering boxes as cars
  • Captioning box ids(infos) in 3D scene
  • Projecting 3D box or points on 2D image

Design pattern

This code includes two parts, one for data loading, other one for visualization of 3D detection and tracking results. The overall framework of design is as shown below:

Prepare data

  • Kitti detection dataset
# For Kitti Detection Dataset         
└── kitti_detection
       ├── testing 
       |      ├──calib
       |      ├──image_2
       |      ├──label_2
       |      └──velodyne      
       └── training
              ├──calib
              ├──image_2
              ├──label_2
              └──velodyne 
  • Kitti tracking dataset
# For Kitti Tracking Dataset         
└── kitti_tracking
       ├── testing 
       |      ├──calib
       |      |    ├──0000.txt
       |      |    ├──....txt
       |      |    └──0028.txt
       |      ├──image_02
       |      |    ├──0000
       |      |    ├──....
       |      |    └──0028
       |      ├──label_02
       |      |    ├──0000.txt
       |      |    ├──....txt
       |      |    └──0028.txt
       |      └──velodyne
       |           ├──0000
       |           ├──....
       |           └──0028      
       └── training # the structure is same as testing set
              ├──calib
              ├──image_02
              ├──label_02
              └──velodyne 
  • Waymo dataset

Please refer to the OpenPCDet for Waymo dataset organization.

Requirements

python3
numpy
vedo
vtk
opencv
matplotlib

Usage

1. Set boxes type & viewer background color

Currently this code supports Kitti (h,w,l,x,y,z,yaw) and Waymo OpenPCDet (x,y,z,l,w,h,yaw) box type. You can set the box type and background color when initializing a viewer as

from viewer.viewer import Viewer

vi = Viewer(box_type="Kitti",bg = (255,255,255))

2. Set objects color map

You can set the objects color map for view tracking results, same as matplotlab.pypot color map. The common used color maps are "rainbow", "viridis","brg","gnuplot","hsv" and etc.

vi.set_ob_color_map('rainbow')

3. Add colorized point clouds to 3D scene

The viewer receive a set of points, it must be a array with shape (N,3). If you want to view the scatter filed, you should to set the 'scatter_filed' with a shape (N,), and set the 'color_map_name' to specify the colors. If the 'scatter_filed' is None, the points will show in color of 'color' arg.

vi.add_points(points[:,0:3],
               radius = 2,
               color = (150,150,150),
               scatter_filed=points[:,2],
               alpha=1,
               del_after_show='True',
               add_to_3D_scene = True,
               add_to_2D_scene = True,
               color_map_name = "viridis")

4. Add boxes or cars to 3D scene

The viewer receive a set of boxes, it must be a array with shape (N,7). You can set the boxes to meshes or lines only, you also can set the line width, conner points. Besides, you can provide a set of IDs(int) to colorize the boxes, and put a set of additional infos to caption the boxes. Note that, the color will set to the color of "color" arg if the ids is None.

vi.add_3D_boxes(boxes=boxes[:,0:7],
                 ids=ids,
                 box_info=infos,
                 color="blue",
                 add_to_3D_scene=True,
                 mesh_alpha = 0.3,
                 show_corner_spheres = True,
                 corner_spheres_alpha = 1,
                 corner_spheres_radius=0.1,
                 show_heading = True,
                 heading_scale = 1,
                 show_lines = True,
                 line_width = 2,
                 line_alpha = 1,
                 show_ids = True,
                 show_box_info=True,
                 del_after_show=True,
                 add_to_2D_scene=True,
                 caption_size=(0.05,0.05)
                 )

You can also render the boxes as cars, the input format is same as boxes.

vi.add_3D_cars(boxes=boxes[:,0:7],
                 ids=ids,
                 box_info=infos,
                 color="blue",
                 mesh_alpha = 1,
                 show_ids = True,
                 show_box_info=True,
                 del_after_show=True,
                 car_model_path="viewer/car.obj",
                 caption_size = (0.1, 0.1)
                )

5. View boxes or points on image

To view the 3D box and points on image, firstly should set the camera intrinsic, extrinsic mat, and put a image. Besides, when adding the boxes and points, the 'add_to_2D_scene' should be set to True.

vi.add_image(image)
vi.set_extrinsic_mat(V2C)
vi.set_intrinsic_mat(P2)

6. Show 2D and 3D results

To show a single frame, you can directly run vi.show_2D(), vi.show_3D(). The visualization window will not close until you press the "Enter" key. Please zoom out the 3D scene by scrolling the middle mouse button backward, and then you can see the point cloud in this window. You can change the viewing angle by dragging the mouse within the visualization window.

To show multiple frames, you can use the for loop, and press the "Enter" key to view a sequence data.

for i in range(len(dataset)):
    V2C, P2, image, boxes = dataset[i]
    vi.add_3D_boxes(boxes)
    vi.add_image(image)
    vi.set_extrinsic_mat(V2C)
    vi.set_intrinsic_mat(P2)
    vi.show_2D()
    vi.show_3D()
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
Image-retrieval-baseline - MUGE Multimodal Retrieval Baseline

MUGE Multimodal Retrieval Baseline This repo is implemented based on the open_cl

47 Dec 16, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
Repository for reproducing `Model-Based Robust Deep Learning`

Model-Based Robust Deep Learning (MBRDL) In this repository, we include the code necessary for reproducing the code used in Model-Based Robust Deep Le

Alex Robey 16 Sep 19, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Notebooks, slides and dataset of the CorrelAid Machine Learning Winter School

CorrelAid Machine Learning Winter School Welcome to the CorrelAid ML Winter School! Task The problem we want to solve is to classify trees in Roosevel

CorrelAid 12 Nov 23, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Experiments for Fake News explainability project

fake-news-explainability Experiments for fake news explainability project This repository only contains the notebooks used to train the models and eva

Lorenzo Flores (Lj) 1 Dec 03, 2022
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022