Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Related tags

Deep LearningSPPR
Overview

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning

This is the implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning" (accepted to CVPR2021).

For more information, check out the paper on [arXiv].

Requirements

  • Python 3.8
  • PyTorch 1.8.1 (>1.1.0)
  • cuda 11.2

Preparing Few-Shot Class-Incremental Learning Datasets

Download following datasets:

1. CIFAR-100

Automatically downloaded on torchvision.

2. MiniImageNet

(1) Download MiniImageNet train/test images[github], and prepare related datasets according to [TOPIC].

(2) or Download processed data from our Google Drive: [mini-imagenet.zip], (and locate the entire folder under datasets/ directory).

3. CUB200

(1) Download CUB200 train/test images, and prepare related datasets according to [TOPIC]:

wget http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz

(2) or Download processed data from our Google Drive: [cub.zip], (and locate the entire folder under datasets/ directory).

Create a directory '../datasets' for the above three datasets and appropriately place each dataset to have following directory structure:

../                                                        # parent directory
├── ./                                           # current (project) directory
│   ├── log/                              # (dir.) running log
│   ├── pre/                              # (dir.) trained models for test.
│   ├── utils/                            # (dir.) implementation of paper 
│   ├── README.md                          # intstruction for reproduction
│   ├── test.sh                          # bash for testing.
│   ├── train.py                        # code for training model
│   └── train.sh                        # bash for training model
└── datasets/
    ├── CIFAR100/                      # CIFAR100 devkit
    ├── mini-imagenet/           
    │   ├── train/                         # (dir.) training images (from Google Drive)
    │   ├── test/                           # (dir.) testing images (from Google Drive)
    │   └── ..some csv files..
    └── cub/                                   # (dir.) contains 200 object classes
        ├── train/                             # (dir.) training images (from Google Drive)
        └── test/                               # (dir.) testing images (from Google Drive)

Training

Choose apporopriate lines in train.sh file.

sh train.sh
  • '--base_epochs' can be modified to control the initial accuracy ('Our' vs 'Our*' in our paper).
  • Training takes approx. several hours until convergence (trained with one 2080 Ti or 3090 GPUs).

Testing

1. Download pretrained models to the 'pre' folder.

Pretrained models are available on our [Google Drive].

2. Test

Choose apporopriate lines in train.sh file.

sh test.sh 

Main Results

The experimental results with 'test.sh 'for three datasets are shown below.

1. CIFAR-100

Model 1 2 3 4 5 6 7 8 9
iCaRL 64.10 53.28 41.69 34.13 27.93 25.06 20.41 15.48 13.73
TOPIC 64.10 56.03 47.89 42.99 38.02 34.60 31.67 28.35 25.86
Ours 63.97 65.86 61.31 57.6 53.39 50.93 48.27 45.36 43.32

2. MiniImageNet

Model 1 2 3 4 5 6 7 8 9
iCaRL 61.31 46.32 42.94 37.63 30.49 24.00 20.89 18.80 17.21
TOPIC 61.31 45.58 43.77 37.19 32.38 29.67 26.44 25.18 21.80
Ours 61.45 63.80 59.53 55.53 52.50 49.60 46.69 43.79 41.92

3. CUB200

Model 1 2 3 4 5 6 7 8 9 10 11
iCaRL 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16
TOPIC 68.68 61.01 55.35 50.01 42.42 39.07 35.47 32.87 30.04 25.91 24.85
Ours 68.05 62.01 57.61 53.67 50.77 46.76 45.43 44.53 41.74 39.93 38.45

The presented results are slightly different from those in the paper, which are the average results of multiple tests.

BibTeX

If you use this code for your research, please consider citing:

@inproceedings{zhu2021self,
  title={Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning},
  author={Zhu, Kai and Cao, Yang and Zhai, Wei and Cheng, Jie and Zha, Zheng-Jun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={6801--6810},
  year={2021}
}
Owner
Kai Zhu
Kai Zhu
LEAP: Learning Articulated Occupancy of People

LEAP: Learning Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission LEAP: Lear

Neural Bodies 60 Nov 18, 2022
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Official repository for ABC-GAN

ABC-GAN The work represented in this repository is the result of a 14 week semesterthesis on photo-realistic image generation using generative adversa

IgorSusmelj 10 Jun 23, 2022
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
TabNet for fastai

TabNet for fastai This is an adaptation of TabNet (Attention-based network for tabular data) for fastai (=2.0) library. The original paper https://ar

Mikhail Grankin 116 Oct 21, 2022
Code for the Paper: Alexandra Lindt and Emiel Hoogeboom.

Discrete Denoising Flows This repository contains the code for the experiments presented in the paper Discrete Denoising Flows [1]. To give a short ov

Alexandra Lindt 3 Oct 09, 2022