Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Overview

Re-TACRED

Re-TACRED: Addressing Shortcomings of the TACRED Dataset
George Stoica, Emmanouil Antonios Platanios, and Barnabás Póczos
In Proceedings of the Thirty-fifth AAAI Conference on Artificial Intelligence 2021

Primary Contact: George Stoica. As of Jan 2021, I am no longer at CMU, and the cs.cmu.edu email may no longer work. Please contact me instead at: [email protected].

Changelog

  • 1.0 - Initial dataset release: Data consisted of 105,206 total instances spread across 40 relations.
  • 1.1 - Updated dataset release: After extensive discussion, we have elected to prune Re-TACRED by ~ 14K instances. The new dataset has 91,467 instances, spread across 40 relations. Pruned data consisted of a mixture of messily segmented entities (and corresponding types), or sentences whose relations were ambigious. While this version is smaller, it is cleaner, and better defined.

This repository contains all relevant resources for using Re-TACRED, a new relation extraction dataset.

For details on this work please check out our:

Below we describe the contents of the four repository directories by name.

Re-TACRED

This directory contains version 1.1 of our revised TACRED dataset patches for each split. Due to licensing restrictions, we cannot provide the complete dataset. However, following Alt, Gabryszak, and Hennig (2020), our patch consists of json files mapping TACRED instances by their id to our revised labels.

The original TACRED dataset is available for download from the LDC here. It is free for members, or $25 for non-members.

Applying the patch is simple and only requires replacing each TACRED instance (where applicable) with our revised relation. For convenience, we provide a script for this named apply_patch.py in the Re-TACRED directory. In the script, you only need to replace

tacred_dir = None
save_dir = None

With the path to your TACRED dataset save directory, and the directory where you wish to save the patched data to respectively.

PA-LSTM, C-GCN & SpanBERT

We base our experiments off of the open-source model repositories of:

However, it is not possible to simply pass Re-TACRED to each model repository because each is hardcoded for TACRED. Thus, we must modify certain files to make each model Re-TACRED compatible. To make it as easy as possible, we provide all our altered files in each named model directory (e.g., the provided PA-LSTM directory). All that needs to be done is to replace the corresponding file in our provided directory with the corresponding file in the original model repository. For instance, you may replace SpanBERT's "run_tacred.py" file with our "run_tacred.py" file. Running experiments is equivalent to how it is performed in the original model repositories.

Note that our files also contain certain "quality of life" changes that make running each model more convenient for us. Examples include adding and tracking the test split while training (as opposed to only the dev set).

Owner
George Stoica
PhD ML @ Georgia Tech
George Stoica
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
An image classification app boilerplate to serve your deep learning models asap!

Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho

Smaranjit Ghose 27 Oct 06, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
Matthew Colbrook 1 Apr 08, 2022
Open source hardware and software platform to build a small scale self driving car.

Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.

Autorope 2.4k Jan 04, 2023
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"

EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa

Yezhen Wang 36 Dec 02, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
Replication Code for "Self-Supervised Bug Detection and Repair" NeurIPS 2021

Self-Supervised Bug Detection and Repair This is the reference code to replicate the research in Self-Supervised Bug Detection and Repair in NeurIPS 2

Microsoft 85 Dec 24, 2022
ECAENet (TensorFlow and Keras)

ECAENet: EfficientNet with Efficient Channel Attention for Plant Species Recognition (SCI:Q3) (Journal of Intelligent & Fuzzy Systems)

4 Dec 22, 2022
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image

Defocus Map Estimation and Deblurring from a Single Dual-Pixel Image This repository is an implementation of the method described in the following pap

21 Dec 15, 2022
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
Algorithmic Trading using RNN

Deep-Trading This an implementation adapted from Rachnog Neural networks for algorithmic trading. Part One — Simple time series forecasting and this c

Hazem Nomer 29 Sep 04, 2022
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022