Implementation of average- and worst-case robust flatness measures for adversarial training.

Overview

Relating Adversarially Robust Generalization to Flat Minima

This repository contains code corresponding to the MLSys'21 paper:

D. Stutz, M. Hein, B. Schiele. Relating Adversarially Robust Generalization to Flat Minima. ICCV, 2021.

Please cite as:

@article{Stutz2021ICCV,
    author    = {David Stutz and Matthias Hein and Bernt Schiele},
    title     = {Relating Adversarially Robust Generalization to Flat Minima},
    booktitle = {IEEE International Conference on Computer Vision (ICCV)},
    publisher = {IEEE Computer Society},
    year      = {2021}
}

Also check the project page.

This repository allows to reproduce experiments reported in the paper or use the correspondsing quantization, weight clipping or training procedures as standalone components.

Relating Adversarially Robust Generalization to Flat Minima.

Overview

Installation

The following list includes all Python packages required

  • torch (including torch.utils.tensorboard)
  • torchvision
  • tensorflow
  • tensorboard
  • h5py
  • json
  • numpy
  • zipfile
  • umap
  • sklearn
  • imageio
  • scipy
  • imgaug

The requirements can be checked using python3 tests/test_installation.py. If everything works correctly, all tests in tests/ should run without failure.

Code tested with the following versions:

  • Debain 9
  • Python 3.5.3
  • torch 1.3.1+cu92 (with CUDA 9.2)
  • torchvision 0.4.2+cu92
  • tensorflow 1.14.0
  • tensorboard 1.14.0
  • h5py 2.9.0
  • numpy 1.18.2
  • scipy 1.4.1
  • sklearn 0.22.1
  • imageio 2.5.0
  • imgaug 0.2.9
  • gcc 6.3.0

Also see environment.yml for a (not minimal) export of the used environment.

Download Datasets

To prepare experiments, datasets need to be downloaded and their paths need to be specified:

Check common/paths.py and adapt the following variables appropriately:

# Absolute path to the data directory:
# BASE_DATA/mnist will contain MNIST
# BASE_DATA/Cifar10 (capitlization!) will contain Cifar10
# BASE_DATA/Cifar100 (capitlization!) will contain Cifar100
BASE_DATA = '/absolute/path/to/data/directory/'
# Absolute path to experiments directory, experimental results will be written here (i.e., models, perturbed models ...)
BASE_EXPERIMENTS = '/absolute/path/to/experiments/directory/'
# Absolute path to log directory (for TensorBoard logs).
BASE_LOGS = '/absolute/path/to/log/directory/'
# Absolute path to code directory (this should point to the root directory of this repository)
BASE_CODE = '/absolute/path/to/root/of/this/repository/'

Download datasets and copy to the appropriate places. Note that MNIST is only needed for tests and is not used in the paper's experiments.

Note that MNIST was not used in the paper, but will be required when running some tests in tests/!

Dataset Download
MNIST mnist.zip
CIFAR10 cifar10.zip
TinyImages 500k tinyimages500k.zip

Manual Conversion of Datasets

Download MNIST and 500k tiny images from the original sources [1,2]. Then, use the scripts in data to convert and check the datasets. For the code to run properly, the datasets are converted to HDF5 format. Cifar is downloaded automatically.

[1] http://yann.lecun.com/exdb/mnist/
[2] https://github.com/yaircarmon/semisup-adv

The final dataset directory structure should look as follows:

BASE_DATE/mnist
|- t10k-images-idx3-ubyte.gz (downloaded)
|- t10k-labels-idx-ubyte.gz (downloaded)
|- train-images-idx3-ubyte.gz (downloaded)
|- train-labels-idx1-ubyte.gz (downloaded)
|- train_images.h5 (from data/mnist/convert_mnist.py)
|- test_images.h5 (from data/mnist/convert_mnist.py)
|- train_labels.h5 (from data/mnist/convert_mnist.py)
|- test_labels.h5 (from data/mnist/convert_mnist.py)
BASE_DATA/Cifar10
|- cifar-10-batches-py (from torchvision)
|- cifar-10-python.tar.gz (from torchvision)
|- train_images.h5 (from data/cifar10/convert_cifar.py)
|- test_images.h5 (from data/cifar10/convert_cifar.py)
|- train_labels.h5 (from data/cifar10/convert_cifar.py)
|- test_labels.h5 (from data/cifar10/convert_cifar.py)
BASE_DATA/500k_pseudolabeled.pickle
BASE_DATA/tinyimages500k
|- train_images.h5
|- train_labels.h5

Standalone Components

There are various components that can be used in a standalone fashion. To highlight a few of them:

  • Training procedures for adversarial training variants:
    • Vanilla adversarial training - common/train/adversarial_training.py
    • Adversarial training with (adversarial) weight perturbations - common/train/adversarial_weights_inputs_training.py
    • Adversarial training with semi-supervision - common/train/adversarial_semi_supervised_training.py
    • Adversarial training with Entropy-SGD - common/train/entropy_adversarial_training.py
    • TRADES or MART - common/train/[mart|trades]_adversarial_training.py
  • Adversarial attacks:
    • PGD and variants - attacks/batch_gradient_descent.py
    • AutoAttack - attacks/batch_auto_attack.py
  • Computing Hessian eigenvalues and vectors - common/hessian.py

Reproduce Experiments

Experiments are defined in experiments/iccv. The experiments, i.e., attacks, flatness measures and training modesl, are defined in experiments/iccv/common.py. This is done for three cases on CIFAR10: with AutoAugment using cifar10.py, without AutoAugment in cifar10_noaa.py and with unlabeled data (without AutoAugment) in cifar10_noaa_500k.py.

The experiments are run using the command line tools provided in experiments/, e.g., experiments/train.py for training a model and experiments/attack.py for injecting bit errors. Results are evaluated in Jupyter notebooks, an examples can be found in experiments/mlsys/eval/evaluation_cifar10.ipynb.

All experiments are saved in BASE_EXPERIMENTS.

Training

Training a model is easy using the following command line tool:

python3 train.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100 --whiten --n=rebn --channels=64

It also allows to use different activation functions using the -a option, different architectures or normalization layers. As detailed above, iccv.cifar10_noaa corresponds to CIFAR10 without AutoAugment. The same models can be trained with AutoAugment using iccv.cifar10 or with additional unlabeled data using iccv.cifar10_noo_500k. The model identifier, e.g., at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100 is defined in experiments/iccv/common.py and examples can be found below.

Evaluation

To evaluate trained models on clean test or training examples use:

python3 test.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100 --whiten --n=rebn --channels=64

with --train for training examples. Using --epochs this can be done for all snapshots, i.e., every 5th epoch.

Adversarial evaluation involves computing robust test error using AutoAttack, robust loss using PGD and average- as well as worst-case flatness:

python3 attack.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100 --whiten --n=rebn --channels=64 cifar10_benchmark

This can also be done for every 5th epoch as follows:

python3 attack.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100 --whiten --n=rebn --channels=64 cifar10_epochs_benchmark --epochs

(Note that the downloadable experiment data only includes snapshots for vanilla adversarial training in the interest of download size.)

Visualization

Pre-computed experiments can be downloaded here. Note that this data does not correspond to the results from the paper, but were generated using this repository to illustrate usage. These models also do not include snapshots in the interest of download size. Log files for plotting training curves are also not included.

The plots from the paper can be produced using experiments/iccv/eval/evaluation_iccv.ipynb. When ran correctly, the notebook should look as in experiments/iccv/eval/evaluation_iccv.pdf. The evaluation does not include all models from the paper by default, but illustrates the usage on some key models. To run the evaluation and create the below plots, the following models need to be trained and evaluated using cifar10_benchmark defined in experiments/iccv.common.py:

  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_linf_gd_normalized_lr0007_mom0_i14_e00314_f100
  • at_linf_gd_normalized_lr0007_mom0_i7_e00352_f100
  • at_ii_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_pll_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • 0005p_at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ls01
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ls02
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ls03
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ls04
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ls05
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ln01
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ln02
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ln03
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ln04
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_ln05
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_cyc
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_wd0001
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_wd001
  • at_linf_gd_normalized_lr0007_mom0_i7_e00314_f100_wd005
  • at_ssl05_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_ssl1_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_ssl2_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_ssl4_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • at_ssl8_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • trades1_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • trades3_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • trades6_linf_gd_normalized_lr0007_mom0_i7_e00314_f100
  • trades9_linf_gd_normalized_lr0007_mom0_i7_e00314_f100

Examples for training and evaluation can be found above. The corresponding correlation plots from the paper should look as follows with the downloaded experiment data:

Average-Case Robust Flatness and RLoss.

Average-Case Robust Flatness and Robust Generalization.

Visualizing Robust Flatness

For visualizing the robust loss landscape across, the following commands can be used:

python3 visualize.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i14_e00314_f100 --channels=64 --whiten -n=rebn weight_l2_random_nonorm2_e01_at10 -l=input_linf_gd_normalized_lr0007_mom0_i10_e00314_at10 -d=layer_l2_05
python3 visualize.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i14_e00314_f100 --channels=64 --whiten -n=rebn weight_l2_gd_nonorm2_lwrl2normalized_i7_lr001_mom0_e0005_at10_test -l=input_linf_gd_normalized_lr0007_mom0_i10_e00314_at10 -d=layer_l2_001

Random Direction.

Adversarial Direction.

Hessian Eigenvalues

The following command allows to compute Hessian eigenvalues:

python3 hessian.py iccv.cifar10_noaa resnet18 at_linf_gd_normalized_lr0007_mom0_i14_e00314_f100 --channels=64 --whiten -n=rebn -k=4

License

This repository includes code from:

Copyright (c) 2021 David Stutz, Max-Planck-Gesellschaft

Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use this software and associated documentation files (the "Software").

The authors hereby grant you a non-exclusive, non-transferable, free of charge right to copy, modify, merge, publish, distribute, and sublicense the Software for the sole purpose of performing non-commercial scientific research, non-commercial education, or non-commercial artistic projects.

Any other use, in particular any use for commercial purposes, is prohibited. This includes, without limitation, incorporation in a commercial product, use in a commercial service, or production of other artefacts for commercial purposes.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

You understand and agree that the authors are under no obligation to provide either maintenance services, update services, notices of latent defects, or corrections of defects with regard to the Software. The authors nevertheless reserve the right to update, modify, or discontinue the Software at any time.

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. You agree to cite the corresponding papers (see above) in documents and papers that report on research using the Software.

Owner
David Stutz
PhD student at Max Planck Institute for Informatics, davidstutz.de
David Stutz
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17k Jan 02, 2023
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
Minimal deep learning library written from scratch in Python, using NumPy/CuPy.

SmallPebble Project status: experimental, unstable. SmallPebble is a minimal/toy automatic differentiation/deep learning library written from scratch

Sidney Radcliffe 92 Dec 30, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
Code of the paper "Shaping Visual Representations with Attributes for Few-Shot Learning (ASL)".

Shaping Visual Representations with Attributes for Few-Shot Learning This code implements the Shaping Visual Representations with Attributes for Few-S

chx_nju 9 Sep 01, 2022
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement

Juntang Zhuang 116 Sep 06, 2022
PyTorch implementation HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections

HoroPCA This code is the official PyTorch implementation of the ICML 2021 paper: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projec

HazyResearch 52 Nov 14, 2022
TimeSHAP explains Recurrent Neural Network predictions.

TimeSHAP TimeSHAP is a model-agnostic, recurrent explainer that builds upon KernelSHAP and extends it to the sequential domain. TimeSHAP computes even

Feedzai 90 Dec 18, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency[ECCV 2020]

Self-Supervised Monocular 3D Face Reconstruction by Occlusion-Aware Multi-view Geometry Consistency(ECCV 2020) This is an official python implementati

304 Jan 03, 2023
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

AI virtual gym is an AI program which can be used to exercise and can be used to see if we are doing the exercises

4 Feb 13, 2022