Procedural 3D data generation pipeline for architecture

Overview

Synthetic Dataset Generator

Authors:

This is a tool that generates a dataset of synthetic buildings of different typologies.

Arxiv Website Samples

The generated data includes:

  • Mesh files of generated buildings, .obj format
  • Rendered images of the mesh, .png format
  • Rendered segmentation masks, .png format
  • Depth annotation, .png and .exr format
  • Surface normals annotation, .png format
  • Point cloud files, .ply format (the number of points by default is 2048, can be changed in dataset_config.py)

How To Use

  • Install Blender>=2.90. After installation make sure to add blender as an Environment variable.
  • Download the package as a .zip file or:
git clone https://github.com/CDInstitute/CompoNET

*Navigate to the Building-Dataset-Generator folder.

pip install -r requirements.txt

To create completely synthetic buildings use:

run.bat

Or:

blender setup.blend --python dataset.py

Unfortunately, it is not possible to use Blender in background mode as it will not render the image masks correctly.

Note: all the parameters related to the dataset (including any specific parameters for your buildings (e.g. max and min height / width / length)) are to be provided in dataset_config.py. Default values adhere to international standards (min) and most common European values (max):

  • minimum height 3m
  • minimum length and width 6m
  • maximum length, width, height 30 m Other values to set:
  • number of dataset samples
  • building types
  • component materials
  • rendered image dimensions
  • number of points in the point clouds
  • paths to store the generated data
  • option to save the .exr files

Annotation structure

{'img': 'images/0.png', 'category': 'building', 'img_size': (256, 256), '2d_keypoints': [], 'mask': 'masks/0.png', 'img_source': 'synthetic', 'model': 'models/0.obj', 'point_cloud': 'PointCloud/0.ply', 'model_source': 'synthetic', 'trans_mat': 0, 'focal_length': 35.0, 'cam_position': (0.0, 0.0, 0.0), 'inplane_rotation': 0, 'truncated': False, 'occluded': False, 'slightly_occluded': False, 'bbox': [0.0, 0.0, 0.0, 0.0], 'material': ['concrete', 'brick']}

Performance

We ran the dataset generation algorithm for 100 model samples with different input parameters on Windows 10 OS on CPU and GPU using AMD Ryzen 7 3800-X 8-Core Processor and GeForce GTX 1080. Here we report the results for the multiview generation (3 views per model):

GPU Multiview Time (h)
1.7
2.7
0.34
0.8

Citation

Bibtex format

@inproceedings{fedorova2021synthetic,
      title={Synthetic 3D Data Generation Pipeline for Geometric Deep Learning in Architecture}, 
      author={Stanislava Fedorova and Alberto Tono and Meher Shashwat Nigam and Jiayao Zhang and Amirhossein Ahmadnia and Cecilia Bolognesi and Dominik L. Michels},
      year={2021},
}

Generated Image Samples

Owner
Computational Design Institute
501(c)(3) Research Nonprofit for Digital and Humanities
Computational Design Institute
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 67 Dec 28, 2022
Trustworthy AI related projects

Trustworthy AI This repository aims to include trustworthy AI related projects from Huawei Noah's Ark Lab. Current projects include: Causal Structure

HUAWEI Noah's Ark Lab 589 Dec 30, 2022
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
Notepy is a full-featured Notepad Python app

Notepy A full featured python text-editor Notable features Autocompletion for parenthesis and quote Auto identation Syntax highlighting Compile and ru

Mirko Rovere 11 Sep 28, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022