LUKE -- Language Understanding with Knowledge-based Embeddings

Related tags

Deep Learningluke
Overview

LUKE

CircleCI


LUKE (Language Understanding with Knowledge-based Embeddings) is a new pre-trained contextualized representation of words and entities based on transformer. It was proposed in our paper LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention. It achieves state-of-the-art results on important NLP benchmarks including SQuAD v1.1 (extractive question answering), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), TACRED (relation classification), and Open Entity (entity typing).

This repository contains the source code to pre-train the model and fine-tune it to solve downstream tasks.

News

November 24, 2021: Entity disambiguation example is available

The example code of entity disambiguation based on LUKE has been added to this repository. This model was originally proposed in our paper, and achieved state-of-the-art results on five standard entity disambiguation datasets: AIDA-CoNLL, MSNBC, AQUAINT, ACE2004, and WNED-WIKI.

For further details, please refer to the example directory.

August 3, 2021: New example code based on Hugging Face Transformers and AllenNLP is available

New fine-tuning examples of three downstream tasks, i.e., NER, relation classification, and entity typing, have been added to LUKE. These examples are developed based on Hugging Face Transformers and AllenNLP. The fine-tuning models are defined using simple AllenNLP's Jsonnet config files!

The example code is available in the examples_allennlp directory.

May 5, 2021: LUKE is added to Hugging Face Transformers

LUKE has been added to the master branch of the Hugging Face Transformers library. You can now solve entity-related tasks (e.g., named entity recognition, relation classification, entity typing) easily using this library.

For example, the LUKE-large model fine-tuned on the TACRED dataset can be used as follows:

>>> from transformers import LukeTokenizer, LukeForEntityPairClassification
>>> model = LukeForEntityPairClassification.from_pretrained("studio-ousia/luke-large-finetuned-tacred")
>>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-tacred")
>>> text = "Beyoncé lives in Los Angeles."
>>> entity_spans = [(0, 7), (17, 28)]  # character-based entity spans corresponding to "Beyoncé" and "Los Angeles"
>>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> predicted_class_idx = int(logits[0].argmax())
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: per:cities_of_residence

We also provide the following three Colab notebooks that show how to reproduce our experimental results on CoNLL-2003, TACRED, and Open Entity datasets using the library:

Please refer to the official documentation for further details.

November 5, 2021: LUKE-500K (base) model

We released LUKE-500K (base), a new pretrained LUKE model which is smaller than existing LUKE-500K (large). The experimental results of the LUKE-500K (base) and LUKE-500K (large) on SQuAD v1 and CoNLL-2003 are shown as follows:

Task Dataset Metric LUKE-500K (base) LUKE-500K (large)
Extractive Question Answering SQuAD v1.1 EM/F1 86.1/92.3 90.2/95.4
Named Entity Recognition CoNLL-2003 F1 93.3 94.3

We tuned only the batch size and learning rate in the experiments based on LUKE-500K (base).

Comparison with State-of-the-Art

LUKE outperforms the previous state-of-the-art methods on five important NLP tasks:

Task Dataset Metric LUKE-500K (large) Previous SOTA
Extractive Question Answering SQuAD v1.1 EM/F1 90.2/95.4 89.9/95.1 (Yang et al., 2019)
Named Entity Recognition CoNLL-2003 F1 94.3 93.5 (Baevski et al., 2019)
Cloze-style Question Answering ReCoRD EM/F1 90.6/91.2 83.1/83.7 (Li et al., 2019)
Relation Classification TACRED F1 72.7 72.0 (Wang et al. , 2020)
Fine-grained Entity Typing Open Entity F1 78.2 77.6 (Wang et al. , 2020)

These numbers are reported in our EMNLP 2020 paper.

Installation

LUKE can be installed using Poetry:

$ poetry install

The virtual environment automatically created by Poetry can be activated by poetry shell.

Released Models

We initially release the pre-trained model with 500K entity vocabulary based on the roberta.large model.

Name Base Model Entity Vocab Size Params Download
LUKE-500K (base) roberta.base 500K 253 M Link
LUKE-500K (large) roberta.large 500K 483 M Link

Reproducing Experimental Results

The experiments were conducted using Python3.6 and PyTorch 1.2.0 installed on a server with a single or eight NVidia V100 GPUs. We used NVidia's PyTorch Docker container 19.02. For computational efficiency, we used mixed precision training based on APEX library which can be installed as follows:

$ git clone https://github.com/NVIDIA/apex.git
$ cd apex
$ git checkout c3fad1ad120b23055f6630da0b029c8b626db78f
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" .

The APEX library is not needed if you do not use --fp16 option or reproduce the results based on the trained checkpoint files.

The commands that reproduce the experimental results are provided as follows:

Entity Typing on Open Entity Dataset

Dataset: Link
Checkpoint file (compressed): Link

Using the checkpoint file:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    entity-typing run \
    --data-dir=<DATA_DIR> \
    --checkpoint-file=<CHECKPOINT_FILE> \
    --no-train

Fine-tuning the model:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    entity-typing run \
    --data-dir=<DATA_DIR> \
    --train-batch-size=2 \
    --gradient-accumulation-steps=2 \
    --learning-rate=1e-5 \
    --num-train-epochs=3 \
    --fp16

Relation Classification on TACRED Dataset

Dataset: Link
Checkpoint file (compressed): Link

Using the checkpoint file:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    relation-classification run \
    --data-dir=<DATA_DIR> \
    --checkpoint-file=<CHECKPOINT_FILE> \
    --no-train

Fine-tuning the model:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    relation-classification run \
    --data-dir=<DATA_DIR> \
    --train-batch-size=4 \
    --gradient-accumulation-steps=8 \
    --learning-rate=1e-5 \
    --num-train-epochs=5 \
    --fp16

Named Entity Recognition on CoNLL-2003 Dataset

Dataset: Link
Checkpoint file (compressed): Link

Using the checkpoint file:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    ner run \
    --data-dir=<DATA_DIR> \
    --checkpoint-file=<CHECKPOINT_FILE> \
    --no-train

Fine-tuning the model:

$ python -m examples.cli\
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    ner run \
    --data-dir=<DATA_DIR> \
    --train-batch-size=2 \
    --gradient-accumulation-steps=4 \
    --learning-rate=1e-5 \
    --num-train-epochs=5 \
    --fp16

Cloze-style Question Answering on ReCoRD Dataset

Dataset: Link
Checkpoint file (compressed): Link

Using the checkpoint file:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    entity-span-qa run \
    --data-dir=<DATA_DIR> \
    --checkpoint-file=<CHECKPOINT_FILE> \
    --no-train

Fine-tuning the model:

$ python -m examples.cli \
    --num-gpus=8 \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    entity-span-qa run \
    --data-dir=<DATA_DIR> \
    --train-batch-size=1 \
    --gradient-accumulation-steps=4 \
    --learning-rate=1e-5 \
    --num-train-epochs=2 \
    --fp16

Extractive Question Answering on SQuAD 1.1 Dataset

Dataset: Link
Checkpoint file (compressed): Link
Wikipedia data files (compressed): Link

Using the checkpoint file:

$ python -m examples.cli \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    reading-comprehension run \
    --data-dir=<DATA_DIR> \
    --checkpoint-file=<CHECKPOINT_FILE> \
    --no-negative \
    --wiki-link-db-file=enwiki_20160305.pkl \
    --model-redirects-file=enwiki_20181220_redirects.pkl \
    --link-redirects-file=enwiki_20160305_redirects.pkl \
    --no-train

Fine-tuning the model:

$ python -m examples.cli \
    --num-gpus=8 \
    --model-file=luke_large_500k.tar.gz \
    --output-dir=<OUTPUT_DIR> \
    reading-comprehension run \
    --data-dir=<DATA_DIR> \
    --no-negative \
    --wiki-link-db-file=enwiki_20160305.pkl \
    --model-redirects-file=enwiki_20181220_redirects.pkl \
    --link-redirects-file=enwiki_20160305_redirects.pkl \
    --train-batch-size=2 \
    --gradient-accumulation-steps=3 \
    --learning-rate=15e-6 \
    --num-train-epochs=2 \
    --fp16

Citation

If you use LUKE in your work, please cite the original paper:

@inproceedings{yamada2020luke,
  title={LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention},
  author={Ikuya Yamada and Akari Asai and Hiroyuki Shindo and Hideaki Takeda and Yuji Matsumoto},
  booktitle={EMNLP},
  year={2020}
}

Contact Info

Please submit a GitHub issue or send an e-mail to Ikuya Yamada ([email protected]) for help or issues using LUKE.

Owner
Studio Ousia
Studio Ousia
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
Pytorch Implementation of "Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation"

CRL_EGPG Pytorch Implementation of Contrastive Representation Learning for Exemplar-Guided Paraphrase Generation We use contrastive loss implemented b

YHR 25 Nov 14, 2022
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
A repository that finds a person who looks like you by using face recognition technology.

Find Your Twin Hello everyone, I've always wondered how casting agencies do the casting for a scene where a certain actor is young or old for a movie

Cengizhan Yurdakul 3 Jan 29, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022