Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

Related tags

Deep LearningNRNS
Overview

No RL No Simulation (NRNS)

Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

NRNS is a heriarchical modular approach to image goal navigation that uses a topological map and distance estimator to navigate and self-localize. Distance function and target prediction function are learnt over passive video trajectories gathered from Mp3D and Gibson.

NRNS is a heriarchical modular approach to image goal navigation that uses a topological map and distance estimator to navigate and self-localize. Distance function and target prediction function are learnt over passive video trajectories gathered from Mp3D and Gibson.

[project website]

Setup

This project is developed with Python 3.6. If you are using miniconda or anaconda, you can create an environment:

conda create -n nrns python3.6
conda activate nrns

Install Habitat and Other Dependencies

NRNS makes extensive use of the Habitat Simulator and Habitat-Lab developed by FAIR. You will first need to install both Habitat-Sim and Habitat-Lab.

Please find the instructions to install habitat here

If you are using conda, Habitat-Sim can easily be installed with

conda install -c aihabitat -c conda-forge habitat-sim headless

We recommend downloading the test scenes and running the example script as described here to ensure the installation of Habitat-Sim and Habitat-Lab was successful. Now you can clone this repository and install the rest of the dependencies:

git clone [email protected]:meera1hahn/NRNS.git
cd NRNS
python -m pip install -r requirements.txt
python download_aux.py

Download Scene Data

Like Habitat-Lab, we expect a data folder (or symlink) with a particular structure in the top-level directory of this project. Running the download_aux.py script will download the pretrained models but you will still need to download the scene data. We evaluate our agents on Matterport3D (MP3D) and Gibson scene reconstructions. Instructions on how to download RealEstate10k can be found here.

Image-Nav Test Episodes

The image-nav test epsiodes used in this paper for MP3D and Gibson can be found here. These were used to test all baselines and NRNS.

Matterport3D

The official Matterport3D download script (download_mp.py) can be accessed by following the "Dataset Download" instructions on their project webpage. The scene data can then be downloaded this way:

# requires running with python 2.7
python download_mp.py --task habitat -o data/scene_datasets/mp3d/

Extract this data to data/scene_datasets/mp3d such that it has the form data/scene_datasets/mp3d/{scene}/{scene}.glb. There should be 90 total scenes. We follow the standard train/val/test splits.

Gibson

The official Gibson dataset can be accessed on their project webpage. Please follow the link to download the Habitat Simulator compatible data. The link will first take you to the license agreement and then to the data. We follow the standard train/val/test splits.

Running pre-trained models

Look at the run scripts in src/image_nav/run_scripts/ for examples of how to run the model.

Difficulty settings options are: easy, medium, hard

Path Type setting options are: straight, curved

To run NRNS on gibson without noise for example on the straight setting with a medium difficulty

cd src/image_nav/
python -W ignore run.py \
    --dataset 'gibson' \
    --path_type 'straight' \
    --difficulty 'medium' \

Citing

If you use NRNS in your research, please cite the following paper:

@inproceedings{hahn_nrns_2021,
  title={No RL, No Simulation: Learning to Navigate without Navigating},
  author={Meera Hahn and Devendra Chaplot and Mustafa Mukadam and James M. Rehg and Shubham Tulsiani and Abhinav Gupta},
  booktitle={Neurips},
  year={2021}
 }
Owner
Meera Hahn
Ph.D. Student in Computer Science School of Interactive Computing Georgia Institute of Technology
Meera Hahn
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Sefik Ilkin Serengil 5.2k Jan 02, 2023
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Metric learning algorithms in Python

metric-learn: Metric Learning in Python metric-learn contains efficient Python implementations of several popular supervised and weakly-supervised met

1.3k Dec 28, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
People Interaction Graph

Gihan Jayatilaka*, Jameel Hassan*, Suren Sritharan*, Janith Senananayaka, Harshana Weligampola, et. al., 2021. Holistic Interpretation of Public Scenes Using Computer Vision and Temporal Graphs to Id

University of Peradeniya : COVID Research Group 1 Aug 24, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
A Tensorflow implementation of BicycleGAN.

BicycleGAN implementation in Tensorflow As part of the implementation series of Joseph Lim's group at USC, our motivation is to accelerate (or sometim

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 97 Dec 02, 2022