[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation

Overview

RCIL

[CVPR2022] Representation Compensation Networks for Continual Semantic Segmentation
Chang-Bin Zhang1, Jia-Wen Xiao1, Xialei Liu1, Ying-Cong Chen2, Ming-Ming Cheng1
1 College of Computer Science, Nankai University
2 The Hong Kong University of Science and Technology

Conference Paper

PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC

Method

截屏2022-04-09 上午1 02 44

Update

  • Coming Soon add data folder
  • Coming Soon init code for Classification
  • Coming Soon add training scripts for ADE20K and cityscapes
  • 09/04/2022 init code for segmentation
  • 09/04/2022 init readme

Benchmark and Setting

There are two commonly used settings, disjoint and overlapped. In the disjoint setting, assuming we know all classes in the future, the images in the current training step do not contain any classes in the future. The overlapped setting allows potential classes in the future to appear in the current training images. We call each training on the newly added dataset as a step. Formally, X-Y denotes the continual setting in our experiments, where X denotes the number of classes that we need to train in the first step. In each subsequent learning step, the newly added dataset contains Y classes.

There are some settings reported in our paper. You can also try it on other any custom settings.

  • Continual Class Segmentation:

    1. PASCAL VOC 2012 dataset:
      • 15-5 overlapped
      • 15-5 disjoint
      • 15-1 overlapped
      • 15-1 disjoint
      • 10-1 overlapped
      • 10-1 disjoint
    2. ADE20K dataset:
      • 100-50 overlapped
      • 100-10 overlapped
      • 50-50 overlapped
      • 100-5 overlapped
  • Continual Domain Segmentation:

    1. Cityscapes:
      • 11-5
      • 11-1
      • 1-1
  • Extension Experiments on Continual Classification

    1. ImageNet-100
      • 50-10

Performance

  • Continual Class Segmentation on PASCAL VOC 2012
Method Pub. 15-5 disjoint 15-5 overlapped 15-1 disjoint 15-1 overlapped 10-1 disjoint 10-1 overlapped
LWF TPAMI 2017 54.9 55.0 5.3 5.5 4.3 4.8
ILT ICCVW 2019 58.9 61.3 7.9 9.2 5.4 5.5
MiB CVPR 2020 65.9 70.0 39.9 32.2 6.9 20.1
SDR CVPR 2021 67.3 70.1 48.7 39.5 14.3 25.1
PLOP CVPR 2021 64.3 70.1 46.5 54.6 8.4 30.5
Ours CVPR 2022 67.3 72.4 54.7 59.4 18.2 34.3
  • Continual Class Segmentation on ADE20K
Method Pub. 100-50 overlapped 100-10 overlapped 50-50 overlapped 100-5 overlapped
ILT ICCVW 2019 17.0 1.1 9.7 0.5
MiB CVPR 2020 32.8 29.2 29.3 25.9
PLOP CVPR 2021 32.9 31.6 30.4 28.7
Ours CVPR 2022 34.5 32.1 32.5 29.6
  • Continual Domain Segmentation on Cityscapes
Method Pub. 11-5 11-1 1-1
LWF TPAMI 2017 59.7 57.3 33.0
LWF-MC CVPR 2017 58.7 57.0 31.4
ILT ICCVW 2019 59.1 57.8 30.1
MiB CVPR 2020 61.5 60.0 42.2
PLOP CVPR 2021 63.5 62.1 45.2
Ours CVPR 2022 64.3 63.0 48.9

Dataset Prepare

  • PASCVAL VOC 2012
    sh data/download_voc.sh
  • ADE20K
    sh data/download_ade.sh
  • Cityscapes
    sh data/download_cityscapes.sh

Environment

  1. conda install --yes --file requirements.txt
  2. Install inplace-abn

Training

  1. Dowload pretrained model from ResNet-101_iabn to pretrained/
  2. We have prepared some training scripts in scripts/. You can train the model by
sh scripts/voc/rcil_10-1-overlap.sh

Inference

You can simply modify the bash file by add --test, like

CUDA_VISIBLE_DEVICES=${GPU} python3 -m torch.distributed.launch --master_port ${PORT} --nproc_per_node=${NB_GPU} run.py --data xxx ... --test

Reference

If this work is useful for you, please cite us by:

@inproceedings{zhangCvpr22ContinuSSeg,
  title={Representation Compensation Networks for Continual Semantic Segmentation},
  author={Chang-Bin Zhang and Jiawen Xiao and Xialei Liu and Yingcong Chen and Ming-Ming Cheng},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
  year={2022}
}

Connect

If you have any questions about this work, please feel easy to connect with us (zhangchbin ^ gmail.com).

Thanks

This code is heavily borrowed from [MiB] and [PLOP].

Awesome Continual Segmentation

There is a collection of AWESOME things about continual semantic segmentation, including papers, code, demos, etc. Feel free to pull request and star.

2022

  • Representation Compensation Networks for Continual Semantic Segmentation [CVPR 2022] [PyTorch]
  • Self-training for Class-incremental Semantic Segmentation [TNNLS 2022] [PyTorch]
  • Uncertainty-aware Contrastive Distillation for Incremental Semantic Segmentation [TPAMI 2022] [[PyTorch]]

2021

  • PLOP: Learning without Forgetting for Continual Semantic Segmentation [CVPR 2021] [PyTorch]
  • Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations [CVPR2021] [PyTorch]
  • An EM Framework for Online Incremental Learning of Semantic Segmentation [ACM MM 2021] [PyTorch]
  • SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning [NeurIPS 2021] [PyTorch]

2020

2019

You might also like...
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Siamese-nn-semantic-text-similarity - A repository containing comprehensive Neural Networks based PyTorch implementations for the semantic text similarity task
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

CVPR2022 paper
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift
The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift

TwoStageAlign The official codes of our CVPR2022 paper: A Differentiable Two-stage Alignment Scheme for Burst Image Reconstruction with Large Shift Pa

Official code for
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Comments
  • Reproduce ADE20k

    Reproduce ADE20k

    Hi, thanks for sharing the code.

    I'm trying to reproduce the results for 100-50 ADE20k. Here are the hyper-parameters I used: --pod local --pod_factor 0.001 --pod_logits --classif_adaptive_factor --init_balanced --unce --unkd

    I get the all-mIoU=29.4%, which is much lower than the reported mIoU (34.5%). Could you please share with me the parameters you used to get the reported mIoU?

    opened by HieuPhan33 10
  • 15-1 Pascal-VOC Reproduce

    15-1 Pascal-VOC Reproduce

    Hi, I couldn't reproduce the results for 15-1 Pascal-VOC. I'm running the script voc/plop_15-1-overlap.sh. Since I have two GPUs with 24GB, I adjust the batch size to 12 and trained on 2 GPUs. This ensures the total batch size is 24 like your settings.

    Here are the results | | 0-15 | 16-20 | all | | ---- | ---- | --- | ---- | | Reproduce | 63.41 | 19.25 | 52.90 | | Reported | 70.60 | 23.70 | 59.40 |

    The results are far lower than the results reported in the paper. Could you please advise?

    opened by HieuPhan33 6
  • Reproduced results lower than the reported ones

    Reproduced results lower than the reported ones

    Hi, I directly ran the released codes without any modification. However, I found that the obtained results are lower than the reported ones by >1 percent point, especially the 10-1 setting with a large gap on the base (0-10) classes.

    Relevant log files are provided for your reference. Could you advise the possible reasons that may cause such a problem? Thanks a lot.

    | | 15-5 | | | 15-1 | | | 10-1 | | | |------------|------|-------|------|------|-------|------|------|-------|------| | | 0-15 | 16-20 | all | 0-15 | 16-20 | all | 0-10 | 11-20 | all | | Reported | 78.8 | 52.0 | 72.4 | 70.6 | 23.7 | 59.4 | 55.4 | 15.1 | 34.3 | | Reproduced | 76.7 | 48.4 | 70.0 | 69.0 | 20.5 | 57.4 | 38.0 | 13.4 | 26.3 |

    opened by Ze-Yang 3
  • Full results on Cityscapes

    Full results on Cityscapes

    Nice work! Could you publish the scripts and the corresponding results on Cityscapes? I failed to reproduce the experimental results reported in the paper. I set the batch size as 24. The initial learning rate is 0.02 for the first training step and 0.001 for the next continual learning steps. I train the model for each step with 50 epochs as the paper suggested.

    opened by XiaorongLi-95 4
Owner
Chang-Bin Zhang
Master student at Nankai University.
Chang-Bin Zhang
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

BCMI 49 Jul 27, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
face property detection pytorch

This is the face property train code of project face-detection-project

i am x 2 Oct 18, 2021
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
FLVIS: Feedback Loop Based Visual Initial SLAM

FLVIS Feedback Loop Based Visual Inertial SLAM 1-Video EuRoC DataSet MH_05 Handheld Test in Lab FlVIS on UAV Platform 2-Relevent Publication: Under Re

UAV Lab - HKPolyU 182 Dec 04, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022
MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

datasketch: Big Data Looks Small datasketch gives you probabilistic data structures that can process and search very large amount of data super fast,

Eric Zhu 1.9k Jan 07, 2023
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022