Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Related tags

Deep LearningHNDR
Overview

Handheld Multi-Frame Neural Depth Refinement

This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement .

If you use parts of this work, or otherwise take inspiration from it, please considering citing our paper:

@article{chugunov2021implicit,
  title={The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement},
  author={Chugunov, Ilya and Zhang, Yuxuan and Xia, Zhihao and Zhang, Cecilia and Chen, Jiawen and Heide, Felix},
  journal={arXiv preprint arXiv:2111.13738},
  year={2021}
}

Requirements:

  • Developed using PyTorch 1.10.0 on Linux x64 machine
  • Condensed package requirements are in \requirements.txt. Note that this contains the package versions at the time of publishing, if you update to, for example, a newer version of PyTorch you will need to watch out for changes in class/function calls

Data:

  • Download data from this Google Drive link and unpack into the \data folder
  • Each folder corresponds to a scene [castle, eagle, elephant, frog, ganesha, gourd, rocks, thinker] and contains four files.
    • model.pt is the frozen, trained MLP corresponding to the scene
    • frame_bundle.npz is the recorded bundle data (images, depth, and poses)
    • reprojected_lidar.npy is the merged LiDAR depth baseline as described in the paper
    • snapshot.mp4 is a video of the recorded snapshot for visualization purposes

An explanation of the format and contents of the frame bundles (frame_bundle.npz) is given in an interactive format in \0_data_format.ipynb. We recommend you go through this jupyter notebook before you record your own bundles or otherwise manipulate the data.

Project Structure:

HNDR
  ├── checkpoints  
  │   └── // folder for network checkpoints
  ├── data  
  │   └── // folder for recorded bundle data
  ├── utils  
  │   ├── dataloader.py  // dataloader class for bundle data
  │   ├── neural_blocks.py  // MLP blocks and positional encoding
  │   └── utils.py  // miscellaneous helper functions (e.g. grid/patch sample)
  ├── 0_data_format.ipynb  // interactive tutorial for understanding bundle data
  ├── 1_reconstruction.ipynb  // interactive tutorial for depth reconstruction
  ├── model.py  // the learned implicit depth model
  │             // -> reproject points, query MLP for offsets, visualization
  ├── README.md  // a README in the README, how meta
  ├── requirements.txt  // frozen package requirements
  ├── train.py  // wrapper class for arg parsing and setting up training loop
  └── train.sh  // example script to run training

Reconstruction:

The jupyter notebook \1_reconstruction.ipynb contains an interactive tutorial for depth reconstruction: loading a model, loading a bundle, generating depth.

Training:

The script \train.sh demonstrates a basic call of \train.py to train a model on the gourd scene data. It contains the arguments

  • checkpoint_path - path to save model and tensorboard checkpoints
  • device - device for training [cpu, cuda]
  • bundle_path - path to the bundle data

For other training arguments, see the argument parser section of \train.py.

Best of luck,
Ilya

Official code for MPG2: Multi-attribute Pizza Generator: Cross-domain Attribute Control with Conditional StyleGAN

This is the official code for Multi-attribute Pizza Generator (MPG2): Cross-domain Attribute Control with Conditional StyleGAN. Paper Demo Setup Envir

Fangda Han 5 Sep 01, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
Backend code to use MCPI's python API to make infinite worlds with custom generation

inf-mcpi Backend code to use MCPI's python API to make infinite worlds with custom generation Does not save player-placed blocks! Generation is still

5 Oct 04, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision.

PyTorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{CV2018, author = {Donny You ( Donny You 40 Sep 14, 2022

Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
A foreign language learning aid using a neural network to predict probability of translating foreign words

Langy Langy is a reading-focused foreign language learning aid orientated towards young children. Reading is an activity that every child knows. It is

Shona Lowden 6 Nov 17, 2021
CCCL: Contrastive Cascade Graph Learning.

CCGL: Contrastive Cascade Graph Learning This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as descr

Xovee Xu 19 Dec 05, 2022
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
URIE: Universal Image Enhancementfor Visual Recognition in the Wild

URIE: Universal Image Enhancementfor Visual Recognition in the Wild This is the implementation of the paper "URIE: Universal Image Enhancement for Vis

Taeyoung Son 43 Sep 12, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022