Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Related tags

Deep LearningHNDR
Overview

Handheld Multi-Frame Neural Depth Refinement

This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement .

If you use parts of this work, or otherwise take inspiration from it, please considering citing our paper:

@article{chugunov2021implicit,
  title={The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement},
  author={Chugunov, Ilya and Zhang, Yuxuan and Xia, Zhihao and Zhang, Cecilia and Chen, Jiawen and Heide, Felix},
  journal={arXiv preprint arXiv:2111.13738},
  year={2021}
}

Requirements:

  • Developed using PyTorch 1.10.0 on Linux x64 machine
  • Condensed package requirements are in \requirements.txt. Note that this contains the package versions at the time of publishing, if you update to, for example, a newer version of PyTorch you will need to watch out for changes in class/function calls

Data:

  • Download data from this Google Drive link and unpack into the \data folder
  • Each folder corresponds to a scene [castle, eagle, elephant, frog, ganesha, gourd, rocks, thinker] and contains four files.
    • model.pt is the frozen, trained MLP corresponding to the scene
    • frame_bundle.npz is the recorded bundle data (images, depth, and poses)
    • reprojected_lidar.npy is the merged LiDAR depth baseline as described in the paper
    • snapshot.mp4 is a video of the recorded snapshot for visualization purposes

An explanation of the format and contents of the frame bundles (frame_bundle.npz) is given in an interactive format in \0_data_format.ipynb. We recommend you go through this jupyter notebook before you record your own bundles or otherwise manipulate the data.

Project Structure:

HNDR
  ├── checkpoints  
  │   └── // folder for network checkpoints
  ├── data  
  │   └── // folder for recorded bundle data
  ├── utils  
  │   ├── dataloader.py  // dataloader class for bundle data
  │   ├── neural_blocks.py  // MLP blocks and positional encoding
  │   └── utils.py  // miscellaneous helper functions (e.g. grid/patch sample)
  ├── 0_data_format.ipynb  // interactive tutorial for understanding bundle data
  ├── 1_reconstruction.ipynb  // interactive tutorial for depth reconstruction
  ├── model.py  // the learned implicit depth model
  │             // -> reproject points, query MLP for offsets, visualization
  ├── README.md  // a README in the README, how meta
  ├── requirements.txt  // frozen package requirements
  ├── train.py  // wrapper class for arg parsing and setting up training loop
  └── train.sh  // example script to run training

Reconstruction:

The jupyter notebook \1_reconstruction.ipynb contains an interactive tutorial for depth reconstruction: loading a model, loading a bundle, generating depth.

Training:

The script \train.sh demonstrates a basic call of \train.py to train a model on the gourd scene data. It contains the arguments

  • checkpoint_path - path to save model and tensorboard checkpoints
  • device - device for training [cpu, cuda]
  • bundle_path - path to the bundle data

For other training arguments, see the argument parser section of \train.py.

Best of luck,
Ilya

Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
Usable Implementation of "Bootstrap Your Own Latent" self-supervised learning, from Deepmind, in Pytorch

Bootstrap Your Own Latent (BYOL), in Pytorch Practical implementation of an astoundingly simple method for self-supervised learning that achieves a ne

Phil Wang 1.4k Dec 29, 2022
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
Code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2021

The repo provides the code for paper "Extract, Denoise and Enforce: Evaluating and Improving Concept Preservation for Text-to-Text Generation" EMNLP 2

Yuning Mao 18 May 24, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
3rd Place Solution for ICCV 2021 Workshop SSLAD Track 3A - Continual Learning Classification Challenge

Online Continual Learning via Multiple Deep Metric Learning and Uncertainty-guided Episodic Memory Replay 3rd Place Solution for ICCV 2021 Workshop SS

Rifki Kurniawan 6 Nov 10, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022