Predicting future trajectories of people in cameras of novel scenarios and views.

Overview

Pedestrian Trajectory Prediction

Predicting future trajectories of pedestrians in cameras of novel scenarios and views.

This repository contains the code and models for the following ECCV'20 paper:

SimAug: Learning Robust Representatios from Simulation for Trajectory Prediction Junwei Liang, Lu Jiang, Alexander Hauptmann

Our Pipeline

Input: could be from a streaming camera or saved videos.

Detection: we used a pre-trained model called YOLO (You Only Look Once) to perform object detection, it uses convolutional neural networks to provide real-time object detection, it is popular for its speed and accuracy.

Tracking: we used a pre-trained model called Deep SORT (Simple Online and Realtime Tracking), it uses deep learning to perform object tracking in videos. It works by computing deep features for every bounding box and using the similarity between deep features to also factor into the tracking logic. It is known to work perfectly with YOLO and also popular for its speed and accuracy.

Resizing: at this step, we get the frames and resize them to the required shape which is 1920 X 1080.

Semantic Segmentation: we used a pre-trained model called Deep Lab (Deep Labeling) an algorithm made by Google, to perform the semantic segmentation task, this model works by assigning a predicted value for each pixel in an image or video with the help of deep neural network support. It performs a pixel-wise classification where each pixel is labeled by predicted value encoding its semantic class.

SimAug Model: Simulation as Augmentation, is a novel simulation data augmentation method for trajectory prediction. It augments the representation such that it is robust to the variances in semantic scenes and camera views, it predicts the trajectory in unseen camera views.

Predicted Trajectory: The output of the proposed pipeline.

Code

Fisrt you need to install packages according to the configuration file:

$ pip install -r requirements.txt

Running on video

Then download the deeplab ADE20k model(used for Semantic Segmentation):

$ wget http://download.tensorflow.org/models/deeplabv3_xception_ade20k_train_2018_05_29.tar.gz
$ tar -zxvf deeplabv3_xception_ade20k_train_2018_05_29.tar.gz

Then download SimAug-trained model:

$ wget https://next.cs.cmu.edu/data/packed_models_eccv2020.tgz
$ tar -zxvf packed_models_eccv2020.tgz

Run the pretrained YOLOv5 & DEEPSORT

get the annotations on a sample video many_people.mp4 from yolo and deepsort + resized images to 1920 x 1080

dataset_resize,changelst , annotation = detect('many_people.mp4')

Prepare the annotation

  • get box centre x,y for each person (traj_data)
  • person_box_data : boxes coordinates for all persons
  • other_box_data : boxes of other objects in the same frame with each targeted person
traj_data, person_box_data, other_box_data  = prepared_data_sdd(annotation,changelst)

Run the segmentation model

model_path= 'deeplabv3_xception_ade20k_train/frozen_inference_graph.pb'
seg_output= extract_scene_seg(dataset_resize,model_path,every =100)

Prepare all data for the SimAug model

making npz which contanins arrays for details of the segmentation with annotations and person ids
data=To_npz(8,12,traj_data,seg_output)
np.savez("prepro_fold1/data_test.npz", **data)

Test SimAug-Trained Model

!python Code/test.py prepro_fold1/ packed_models/ best_simaug_model \
--wd 0.001 --runId 0 --obs_len 8 --pred_len 12 --emb_size 32 --enc_hidden_size 256 \
--dec_hidden_size 256 --activation_func tanh --keep_prob 1.0 --num_epochs 30 \
--batch_size 12 --init_lr 0.3 --use_gnn --learning_rate_decay 0.95 --num_epoch_per_decay 5.0 \
--grid_loss_weight 1.0 --grid_reg_loss_weight 0.5 --save_period 3000 \
--scene_h 36 --scene_w 64 --scene_conv_kernel 3 --scene_conv_dim 64 \
--scene_grid_strides 2,4 --use_grids 1,0 --val_grid_num 0 --gpuid 0 --load_best \
--save_output sdd_out.p
To Run the pipeline from here

Demo

ITI.Moving.vehicle.mp4

Results

We capture streaming video that contains 1628 frames, processing time for stages is

• Yolo & Deep SORT: 20.7 f/s

• DeepLabv3: 4.66 f/s

• SimAug: 12.8 f/s

Video_Name Grid_acc minADE minFDE
Moving-ITI 0.6098 22.132 39.271

Dependencies

• Python 3.6 ; TensorFlow 1.15.0 ; Pytorch 1.7 ; Cuda 10

Code Contributors

References

@inproceedings{liang2020simaug,
  title={SimAug: Learning Robust Representations from Simulation for Trajectory Prediction},
  author={Liang, Junwei and Jiang, Lu and Hauptmann, Alexander},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  month = {August},
  year={2020}
}
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
An implementation of the WHATWG URL Standard in JavaScript

whatwg-url whatwg-url is a full implementation of the WHATWG URL Standard. It can be used standalone, but it also exposes a lot of the internal algori

314 Dec 28, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network Requirements pytorch 1.1+ torchvision 0.3+ pyclipper opencv3 gcc

zhoujun 400 Dec 26, 2022
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
Makes patches from huge resolution .svs slide files using openslide

openslide_patcher Makes patches from huge resolution .svs slide files using openslide Example collage I made from outputs:

2 Dec 23, 2021
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021