This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

Related tags

Deep Learningheadnerf
Overview

HeadNeRF: A Real-time NeRF-based Parametric Head Model

This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)". Authors: Yang Hong, Bo Peng, Haiyao Xiao, Ligang Liu and Juyong Zhang*.

| Project Page | Paper |

This code has been tested on ubuntu 20.04/18.04 and contains the following parts:

  1. An interactive GUI that allows users to utilize HeadNeRF to directly edit the generated images’ rendering pose and various semantic attributes.
  2. A fitting framework for obtaining the latent code embedding in HeadNeRF of a single image.

Requirements

  • python3

  • torch>=1.8.1

  • torchvision

  • imageio

  • kornia

  • numpy

  • opencv-python==4.3.0.36

  • pyqt5

  • tqdm

  • face-alignment

  • Pillow, plotly, matplotlib, scipy, scikit-image We recommend running the following commands to create an anaconda environment called "headnerf" and automatically install the above requirements.

    conda env create -f environment.yaml
    conda activate headnerf
  • Pytorch

    Please refer to pytorch for details.

  • Pytorch3d

    It is recommended to install pytorch3d from a local clone.

    git clone https://github.com/facebookresearch/pytorch3d.git
    cd pytorch3d && pip install -e . && cd ..

Note:

  • In order to run the code smoothly, a GPU with performance higher than 1080Ti is recommended.
  • This code can also be run on Windows 10 when the mentioned above requirements are satisfied.

Getting Started

Download ConfigModels.zip, TrainedModels.zip, and LatentCodeSamples.zip, then unzip them to the root dir of this project.

Other links: Google Drive, One Drive

The folder structure is as follows:

headnerf
├── ConfigModels
│   ├── faceparsing_model.pth
│   ├── nl3dmm_dict.pkl
│   └── nl3dmm_net_dict.pth
│
├── TrainedModels
│   ├── model_Reso32.pth
│   ├── model_Reso32HR.pth
│   └── model_Reso64.pth
│
└── LatentCodeSamples
    ├── model_Reso32
    │   ├── S001_E01_I01_P02.pth
    │   └── ...
    ├── model_Reso32HR
    │   ├── S001_E01_I01_P02.pth
    │   └── ...
    └── model_Reso64
        ├── S001_E01_I01_P02.pth
        └── ...

Note:

  • faceparsing_model.pth is from face-parsing.PyTorch, and we utilize it to help generate the head mask.

  • nl3dmm_dict.pkl and nl3dmm_net_dict.pth are from 3D face from X, and they are the parameters of 3DMM.

  • model_Reso32.pth, model_Reso32HR.pth and model_Reso64.pth are our pre-trained models, and their properties are as follows:

    Pre-trained Models Feature Map's Reso Result's Reso GPU 1080Ti GPU 3090
    model_Reso32 32 x 32 256 x 256 ~14fps ~40fps
    model_Reso32HR 32 x 32 512 x 512 ~13fps ~30fps
    model_Reso64 64 x 64 512 x 512 ~ 3fps ~10fps
  • LatentCodeSamples.zip contains some latent codes that correspond to some given images.

The Interactive GUI

#GUI, for editing the generated images’ rendering pose and various semantic attributes.
python MainGUI.py --model_path "TrainedModels/model_Reso64.pth"

Args:

  • model_path is the path of the specified pre-trained model.

An interactive interface like the first figure of this document will be generated after executing the above command.

The fitting framework

This part provides a framework for fitting a single image using HeadNeRF. Besides, some test images are provided in test_data/single_images dir. These images are from FFHQ dataset and do not participate in building HeadNeRF's models.

Data Preprocess

# generating head's mask.
python DataProcess/Gen_HeadMask.py --img_dir "test_data/single_images"

# generating 68-facial-landmarks by face-alignment, which is from 
# https://github.com/1adrianb/face-alignment
python DataProcess/Gen_Landmark.py --img_dir "test_data/single_images"

# generating the 3DMM parameters
python Fitting3DMM/FittingNL3DMM.py --img_size 512 \
                                    --intermediate_size 256  \
                                    --batch_size 9 \
                                    --img_dir "test_data/single_images"

The generated results will be saved to the --img_dir.

Fitting a Single Image

# Fitting a single image using HeadNeRF
python FittingSingleImage.py --model_path "TrainedModels/model_Reso32HR.pth" \
                             --img "test_data/single_images/img_000037.png" \
                             --mask "test_data/single_images/img_000037_mask.png" \
                             --para_3dmm "test_data/single_images/img_000037_nl3dmm.pkl" \
                             --save_root "test_data/fitting_res" \
                             --target_embedding "LatentCodeSamples/*/S025_E14_I01_P02.pth"

Args:

  • para_3dmm is the 3DMM parameter of the input image and is provided in advance to initialize the latent codes of the corresponding image.
  • target_embedding is a head's latent code embedding in HeadNeRF and is an optional input. If it is provided, we will perform linear interpolation on the fitting latent code embedding and the target latent code embedding, and the corresponding head images are generated using HeadNeRF.
  • save_root is the directory where the following results are saved.

Results:

  • The image that merges the input image and the fitting result.
  • The dynamic image generated by continuously changing the rendering pose of the fitting result.
  • The dynamic image generated by performing linear interpolation on the fitting latent code embedding and the target latent code embedding.
  • The latent codes (.pth file) of the fitting result.

Note:

  • Fitting a single image based on model_Reso32.pth requires more than ~5 GB GPU memory.
  • Fitting a single image based on model_Reso32HR.pth requires more than ~6 GB GPU memory.
  • Fitting a single image based on model_Reso64.pth requires more than ~13 GB GPU memory.

Citation

If you find our work useful in your research, please consider citing our paper:

@article{hong2021headnerf,
     author     = {Yang Hong and Bo Peng and Haiyao Xiao and Ligang Liu and Juyong Zhang},
     title      = {HeadNeRF: A Real-time NeRF-based Parametric Head Model},
     booktitle  = {{IEEE/CVF} Conference on Computer Vision and Pattern Recognition (CVPR)},
     year       = {2022}
  }

If you have questions, please contact [email protected].

Acknowledgments

License

Academic or non-profit organization noncommercial research use only.

Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation

ESPNet: Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation This repository contains the source code of our paper, ESPNet (acc

Sachin Mehta 515 Dec 13, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022