Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Overview

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics

This is the code produced as part of the paper Long Range Probabilistic Forecasting in Time-Series using High Order Statistics

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics.

Prathamesh Deshpande and Sunita Sarawagi. arXiv:2111.03394v1.

How to work with Command Line Arguments?

  • If an optional argument is not passed, it's value will be extracted from configuration specified in the file main.py (based on dataset_name, model_name).
  • If a valid argument value is passed through command line arguments, the code will use it further. That is, it will ignore the value assigned in the configuration.

Command Line Arguments Information

Argument name Type Valid Assignments Default
dataset_name str azure, ett, etthourly, Solar, taxi30min, Traffic911 positional argument
saved_models_dir str - None
output_dir str - None
N_input int >0 -1
N_output int >0 -1
epochs int >0 -1
normalize str same, zscore_per_series, gaussian_copula, log None
learning_rate float >0 -1.0
hidden_size int >0 -1
num_grulstm_layers int >0 -1
batch_size int >0 -1
v_dim int >0 -1
t2v_type str local, idx, mdh_lincomb, mdh_parti None
K_list [int,...,int ] [>0,...,>0 ] []
device str - None

Datasets

All the datasets can be found here.

Add the dataset files/directories in data directory before running the code.

Output files

Targets and Forecasts

Following output files are stored in the <output_dir>/<dataset_name>/ directory.

File name Description
inputs.npy Test input values, size: number of time-series x N_input
targets.npy Test target/ground-truth values, size: number of time-series x N_output
<model_name>_pred_mu.npy Mean forecast values. The size of the matrix is number of time-series x number of time-steps
<model_name>_pred_std.npy Standard-deviation of forecast values. The size of the matrix is number of time-series x number of time-steps

Metrics

All the evaluation metrics on test data are stored in <output_dir>/results_<dataset_name>.json in the following format:

{
  <model_name1>: 
    {
      'crps':<crps>,
      'mae':<mae>,
      'mse':<mse>,
      'smape':<smape>,
      'dtw':<dtw>,
      'tdi':<tdi>,
    }
  <model_name2>: 
    {
      'crps':<crps>,
      'mae':<mae>,
      'mse':<mse>,
      'smape':<smape>,
      'dtw':<dtw>,
      'tdi':<tdi>,
    }
    .
    .
    .
}

Here <model_name1>, <model_name2>, ... are different models under consideration.

Replication of Pix2Seq with Pretrained Model

Pretrained-Pix2Seq We provide the pre-trained model of Pix2Seq. This version contains new data augmentation. The model is trained for 300 epochs and c

peng gao 51 Nov 22, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
Molecular AutoEncoder in PyTorch

MolEncoder Molecular AutoEncoder in PyTorch Install $ git clone https://github.com/cxhernandez/molencoder.git && cd molencoder $ python setup.py insta

Carlos Hernández 80 Dec 05, 2022
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022