Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

Overview

n-stage Latent Dirichlet Allocation (n-LDA)

Proposed n-LDA & A Novel Approach for classical LDA

Latent Dirichlet Allocation (LDA) is a generative probabilistic topic model for a given text collection. Topics have a probability distribution over words and text documents over topics. Each subject has a probability distribution over the fixed word corpus [1]. The method exemplifies a mix of these topics for each document. Then, a model is produced by sampling words from this mixture [2].

The coherence value, which is the topic modeling criterion, is used to determine the number of K topic in the system. The coherence value calculates the closeness of words to each other. The topic value of the highest one among the calculated consistency values is chosen as the topic number of the system [3].

After modeling the system with classical LDA, an LDA-based n-stage method is proposed to increase the success of the model. The value of n in the method may vary according to the size of the dataset. With the method, it is aimed to delete the words in the corpus that negatively affect the success. Thus, with the increase in the weight values of the words in the topics formed with the remaining words, the class labels of the topics can be determined more easily [4].

image

The steps of the method are shown in above Figure. In order to reduce the number of words in the dictionary, the threshold value for each topic is calculated. The threshold value is obtained by dividing the sum of the weights of all the words to the word count in the relevant topic. Words with a weight less than the specified threshold value are deleted from the topics and a new dictionary is created for the model. Finally, the system is re-modeled using the LDA algorithm with the new dictionary. These steps can be repeated n times [4].

This method was applied for Turkish and English language. n-stage LDA method was better than classic LDA according to related studies.

Related papers & articles for n-stage LDA

!!! Please citation first paper:

@inproceedings{guven2019comparison,
  title={Comparison of Topic Modeling Methods for Type Detection of Turkish News},
  author={G{\"u}ven, Zekeriya Anil and Diri, Banu and {\c{C}}akalo{\u{g}}lu, Tolgahan},
  booktitle={2019 4th International Conference on Computer Science and Engineering (UBMK)},
  pages={150--154},
  year={2019},
  organization={IEEE}
  doi={10.1109/UBMK.2019.8907050}
}

1-Guven, Z. A., Diri, B., & Cakaloglu, T. (2018, October). Classification of New Titles by Two Stage Latent Dirichlet Allocation. In 2018 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 1-5). Ieee.

2-Guven, Z. A., Diri, B., & Cakaloglu, T. (2021). Evaluation of Non-Negative Matrix Factorization and n-stage Latent Dirichlet Allocation for Emotion Analysis in Turkish Tweets. arXiv preprint arXiv:2110.00418.

3-Güven, Z. A., Diri, B., & Çakaloğlu, T. (2020). Comparison of n-stage Latent Dirichlet Allocation versus other topic modeling methods for emotion analysis. Journal of the Faculty of Engineering and Architecture of Gazi University, 35(4), 2135-2146.

4-Güven, Z. A., Diri, B., & Çakaloğlu, T. (2018, April). Classification of TurkishTweet emotions by n-stage Latent Dirichlet Allocation. In 2018 Electric Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT) (pp. 1-4). IEEE.

5-Güven, Z. A., Diri, B., & Çakaloğlu, T. (2019, September). Comparison of Topic Modeling Methods for Type Detection of Turkish News. In 2019 4th International Conference on Computer Science and Engineering (UBMK) (pp. 150-154). IEEE.

6-GÜVEN, Z. A., Banu, D. İ. R. İ., & ÇAKALOĞLU, T. (2019). Emotion Detection with n-stage Latent Dirichlet Allocation for Turkish Tweets. Academic Platform Journal of Engineering and Science, 7(3), 467-472.

7-Güven, Z. A., Diri, B., & Çakaloğlu, T. Comparison Method for Emotion Detection of Twitter Users. In 2019 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 1-5). IEEE.

References

[1] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation.Journal of Machine LearningResearch, 2003. ISSN 15324435. doi:10.1016/b978-0-12-411519-4.00006-9.

[2] Yong Chen, Hui Zhang, Rui Liu, Zhiwen Ye, and Jianying Lin.Experimental explorations on short texttopic mining between LDA and NMF based Schemes.Knowledge-Based Systems, 2019. ISSN 09507051.doi:10.1016/j.knosys.2018.08.011.

[3] Zekeriya Anil Güven, Banu Diri, and Tolgahan Çakaloˇglu. Classification of New Titles by Two Stage Latent DirichletAllocation. InProceedings - 2018 Innovations in Intelligent Systems and Applications Conference, ASYU 2018, 2018.ISBN 9781538677865. doi:10.1109/ASYU.2018.8554027.

[4] Guven, Zekeriya Anil, Banu Diri, and Tolgahan Cakaloglu. "Evaluation of Non-Negative Matrix Factorization and n-stage Latent Dirichlet Allocation for Emotion Analysis in Turkish Tweets." arXiv preprint arXiv:2110.00418 (2021).

Owner
Anıl Güven
Anıl Güven
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
Code for "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection", ICRA 2021

FGR This repository contains the python implementation for paper "FGR: Frustum-Aware Geometric Reasoning for Weakly Supervised 3D Vehicle Detection"(I

Yi Wei 31 Dec 08, 2022