Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

Overview

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection.

Mask-aware IoU for Anchor Assignment in Real-time Instance Segmentation,
Kemal Oksuz, Baris Can Cam, Fehmi Kahraman, Zeynep Sonat Baltaci, Emre Akbas, Sinan Kalkan, BMVC 2021. (arXiv pre-print)

Summary

Mask-aware IoU: Mask-aware IoU (maIoU) is an IoU variant for better anchor assignment to supervise instance segmentation methods. Unlike the standard IoU, Mask-aware IoU also considers the ground truth masks while assigning a proximity score for an anchor. As a result, for example, if an anchor box overlaps with a ground truth box, but not with the mask of the ground truth, e.g. due to occlusion, then it has a lower score compared to IoU. Please check out the examples below for more insight. Replacing IoU by our maIoU in the state of the art ATSS assigner yields both performance improvement and efficiency (i.e. faster inference) compared to the standard YOLACT method.

maYOLACT Detector: Thanks to the efficiency due to ATSS with maIoU assigner, we incorporate more training tricks into YOLACT, and built maYOLACT Detector which is still real-time but significantly powerful (around 6 AP) than YOLACT. Our best maYOLACT model reaches SOTA performance by 37.7 mask AP on COCO test-dev at 25 fps.

How to Cite

Please cite the paper if you benefit from our paper or the repository:

@inproceedings{maIoU,
       title = {Mask-aware IoU for Anchor Assignment in Real-time Instance Segmentation},
       author = {Kemal Oksuz and Baris Can Cam and Fehmi Kahraman and Zeynep Sonat Baltaci and Sinan Kalkan and Emre Akbas},
       booktitle = {The British Machine Vision Conference (BMCV)},
       year = {2021}
}

Specification of Dependencies and Preparation

  • Please see get_started.md for requirements and installation of mmdetection.
  • Please refer to introduction.md for dataset preparation and basic usage of mmdetection.

Trained Models

Here, we report results in terms of AP (higher better) and oLRP (lower better).

Multi-stage Object Detection

Comparison of Different Assigners (on COCO minival)

Scale Assigner mask AP mask oLRP Log Config Model
400 Fixed IoU 24.8 78.3 log config model
400 ATSS w. IoU 25.3 77.7 log config model
400 ATSS w. maIoU 26.1 77.1 log config model
550 Fixed IoU 28.5 75.2 log config model
550 ATSS w. IoU 29.3 74.5 log config model
550 ATSS w. maIoU 30.4 73.7 log config model
700 Fixed IoU 29.7 74.3 log config model
700 ATSS w. IoU 30.8 73.3 log config model
700 ATSS w. maIoU 31.8 72.5 log config model

maYOLACT Detector (on COCO test-dev)

Scale Backbone mask AP fps Log Config Model
maYOLACT-550 ResNet-50 35.2 30 Coming Soon
maYOLACT-700 ResNet-50 37.7 25 Coming Soon

Running the Code

Training Code

The configuration files of all models listed above can be found in the configs/mayolact folder. You can follow get_started.md for training code. As an example, to train maYOLACT using images with 550 scale on 4 GPUs as we did, use the following command:

./tools/dist_train.sh configs/mayolact/mayolact_r50_4x8_coco_scale550.py 4

Test Code

The configuration files of all models listed above can be found in the configs/mayolact folder. You can follow get_started.md for test code. As an example, first download a trained model using the links provided in the tables below or you train a model, then run the following command to test a model model on multiple GPUs:

./tools/dist_test.sh configs/mayolact/mayolact_r50_4x8_coco_scale550.py ${CHECKPOINT_FILE} 4 --eval bbox segm 

You can also test a model on a single GPU with the following example command:

python tools/test.py configs/mayolact/mayolact_r50_4x8_coco_scale550.py ${CHECKPOINT_FILE} --eval bbox segm
Owner
Kemal Oksuz
Kemal Oksuz
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Syed Waqas Zamir 906 Dec 30, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
Implementation of Change-Based Exploration Transfer (C-BET)

Implementation of Change-Based Exploration Transfer (C-BET), as presented in Interesting Object, Curious Agent: Learning Task-Agnostic Exploration.

Simone Parisi 29 Dec 04, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup)智能人机交互自然语言理解赛道第二名参赛解决方案

2021 CCF BDCI 全国信息检索挑战杯(CCIR-Cup) 智能人机交互自然语言理解赛道第二名解决方案 比赛网址: CCIR-Cup-智能人机交互自然语言理解 1.依赖环境: python==3.8 torch==1.7.1+cu110 numpy==1.19.2 transformers=

JinXiang 22 Oct 29, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021