LAMDA: Label Matching Deep Domain Adaptation

Overview

LAMDA: Label Matching Deep Domain Adaptation

GitHub top languageGitHub last commitGitHub repo sizeGitHub license

This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accepted at ICML 2021.

A. Setup

A.1. Install Package Dependencies

Install manually

Python Environment: >= 3.5
Tensorflow: >= 1.9

Install automatically from YAML file

pip install --upgrade pip
conda env create --file tf1.9py3.5.yml

[UPDATE] Install tensorbayes

Please note that tensorbayes 0.4.0 is out of date. Please copy a newer version to the env folder (tf1.9py3.5) using tensorbayes.tar

source activate tf1.9py3.5
pip install tensorbayes
tar -xvf tensorbayes.tar
cp -rf /tensorbayes/* /opt/conda/envs/tf1.9py3.5/lib/python3.5/site-packages/tensorbayes/

A.2. Datasets

Please download Office-31 here and unzip extracted features in the datasets folder.

B. Training

We first navigate to model folder, and then run run_lamda.py file as bellow:

cd model
  1. A --> W task
python run_lamda.py 1 amazon webcam format csv num_iters 20000 summary_freq 400 learning_rate 0.0001 inorm True batch_size 310 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 0.1 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 0.1 data_path ""
  1. A --> D task
python run_lamda.py 1 amazon dslr format csv num_iters 20000 summary_freq 400 learning_rate 0.0001 inorm True batch_size 310 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 1.0 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 0.05 data_path ""
  1. D --> W task
python run_lamda.py 1 dslr webcam format csv num_iters 20000 summary_freq 400 learning_rate 0.0001 inorm True batch_size 155 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 0.1 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 0.1 data_path ""
  1. W --> D task
python run_lamda.py 1 webcam dslr format csv num_iters 20000 summary_freq 400 learning_rate 0.0001 inorm True batch_size 310 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 0.1 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 0.1 data_path ""
  1. D --> A task
python run_lamda.py 1 dslr amazon format csv num_iters 20000  sumary_freq 400 learning_rate 0.0001 inorm True batch_size 155 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 1.0 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 1.0 data_path ""
  1. W --> A task
python run_lamda.py 1 webcam amazon format csv num_iters 20000 summary_freq 400 learning_rate 0.0001 inorm True batch_size 310 src_class_trade_off 1.0 domain_trade_off 0.1 src_vat_trade_off 1.0 trg_trade_off 0.1 save_grads False cast_data False cnn_size small update_target_loss False m_on_D_trade_off 1.0 m_plus_1_on_D_trade_off 1.0 m_plus_1_on_G_trade_off 1.0 m_on_G_trade_off 1.0 data_path ""

C. Results

Methods A --> W A --> D D --> W W --> D D --> A W --> A Avg
ResNet-50 [1] 70.0 65.5 96.1 99.3 62.8 60.5 75.7
DeepCORAL [2] 83.0 71.5 97.9 98.0 63.7 64.5 79.8
DANN [3] 81.5 74.3 97.1 99.6 65.5 63.2 80.2
ADDA [4] 86.2 78.8 96.8 99.1 69.5 68.5 83.2
CDAN [5] 94.1 92.9 98.6 100.0 71.0 69.3 87.7
TPN [6] 91.2 89.9 97.7 99.5 70.5 73.5 87.1
DeepJDOT [7] 88.9 88.2 98.5 99.6 72.1 70.1 86.2
RWOT [8] 95.1 94.5 99.5 100.0 77.5 77.9 90.8
LAMDA 95.2 96.0 98.5 100.0 87.3 84.4 93.0

D. Citations

Please cite the paper if LAMDA is helpful for your research:

@InProceedings{pmlr-v139-le21a,
  title = 	 {LAMDA: Label Matching Deep Domain Adaptation},
  author =       {Le, Trung and Nguyen, Tuan and Ho, Nhat and Bui, Hung and Phung, Dinh},
  booktitle = 	 {Proceedings of the 38th International Conference on Machine Learning},
  pages = 	 {6043--6054},
  year = 	 {2021},
  editor = 	 {Meila, Marina and Zhang, Tong},
  volume = 	 {139},
  series = 	 {Proceedings of Machine Learning Research},
  month = 	 {18--24 Jul},
  publisher =    {PMLR},
  pdf = 	 {http://proceedings.mlr.press/v139/le21a/le21a.pdf},
  url = 	 {https://proceedings.mlr.press/v139/le21a.html},
  abstract = 	 {Deep domain adaptation (DDA) approaches have recently been shown to perform better than their shallow rivals with better modeling capacity on complex domains (e.g., image, structural data, and sequential data). The underlying idea is to learn domain invariant representations on a latent space that can bridge the gap between source and target domains. Several theoretical studies have established insightful understanding and the benefit of learning domain invariant features; however, they are usually limited to the case where there is no label shift, hence hindering its applicability. In this paper, we propose and study a new challenging setting that allows us to use a Wasserstein distance (WS) to not only quantify the data shift but also to define the label shift directly. We further develop a theory to demonstrate that minimizing the WS of the data shift leads to closing the gap between the source and target data distributions on the latent space (e.g., an intermediate layer of a deep net), while still being able to quantify the label shift with respect to this latent space. Interestingly, our theory can consequently explain certain drawbacks of learning domain invariant features on the latent space. Finally, grounded on the results and guidance of our developed theory, we propose the Label Matching Deep Domain Adaptation (LAMDA) approach that outperforms baselines on real-world datasets for DA problems.}
}

E. References

E.1. Baselines:

[1] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[2] B. Sun and K. Saenko. Deep coral: Correlation alignment for deep domain adaptation. In Gang Hua and Hervé Jéegou, editors, Computer Vision – ECCV 2016 Workshops, pages 443–450, Cham, 2016. Springer International Publishing.

[3] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky. Domain-adversarial training of neural networks. J. Mach. Learn. Res., 17(1):2096–2030, jan 2016.

[4] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain adaptation. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2962–2971, 2017.

[5] M. Long, Z. Cao, J. Wang, and M. I. Jordan. Conditional adversarial domain adaptation. In Advances in Neural Information Processing Systems 31, pages 1640–1650. Curran Associates, Inc., 2018.

[6] Y. Pan, T. Yao, Y. Li, Y. Wang, C. Ngo, and T. Mei. Transferrable prototypical networks for unsupervised domain adaptation. In CVPR, pages 2234–2242, 2019.

[7] B. B. Damodaran, B. Kellenberger, R. Flamary, D. Tuia, and N. Courty. Deepjdot: Deep joint distribution optimal transport for unsupervised domain adaptation. In Computer Vision - ECCV 2018, pages 467–483. Springer, 2018.

[8] R. Xu, P. Liu, L. Wang, C. Chen, and J. Wang. Reliable weighted optimal transport for unsupervised domain adaptation. In CVPR 2020, June 2020.

E.2. GitHub repositories:

  • Some parts of our code (e.g., VAT, evaluation, …) are rewritten with modifications from DIRT-T.
Owner
Tuan Nguyen
Interested in Computer Vision, Domain Adaptation, Optimal Transport.
Tuan Nguyen
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021. Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du. Code f

Bobo Xi 7 Nov 03, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
LeViT a Vision Transformer in ConvNet's Clothing for Faster Inference

LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference This repository contains PyTorch evaluation code, training code and pretrained

Facebook Research 504 Jan 02, 2023
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
使用深度学习框架提取视频硬字幕;docker容器免安装深度学习库,使用本地api接口使得界面和后端识别分离;

extract-video-subtittle 使用深度学习框架提取视频硬字幕; 本地识别无需联网; CPU识别速度可观; 容器提供API接口; 运行环境 本项目运行环境非常好搭建,我做好了docker容器免安装各种深度学习包; 提供windows界面操作; 容器为CPU版本; 视频演示 https

歌者 16 Aug 06, 2022
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search

generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search This repository contains single-threaded TreeMesh code. I'm Hua Tong, a senior stu

Hua Tong 18 Sep 21, 2022
State of the Art Neural Networks for Generative Deep Learning

pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U

Ritvik Rastogi 8 Sep 29, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022