UFPR-ADMR-v2 Dataset

Overview

UFPR-ADMR-v2 Dataset

The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), which serves more than 4M consuming units in the Brazilian state of Paraná. The images were acquired with many different cameras and are available in the JPG format with 320×640 or 640×320 pixels (depending on the camera orientation). More details are available in our paper (currently under review).

Here are some examples from the dataset:

The dataset is split into three subsets: training (3,000 images), validation (1,000 images) and testing (1,000 images). Every image has the following annotations available in a .txt file: the counter’s corners (x1, y1), (x2, y2), (x3, y3), (x4, y4). The corners can be used to rectify the counter patch and represent, respectively, the top-left, top-right, bottom-right, and bottom-left corners. For each dial, the current position (x, y, w, h) and the corresponding reading (the final reading as well as the approximate reading with one decimal place precision). All counters of the dataset (regardless of meter type) have 4 or 5 dials; thus, 22,410 dials were manually annotated.

The full details and statistics regarding the dataset are available in our paper.

How to obtain the dataset

The UFPR-ADMR-v2 dataset is the property of the Energy Company of Paraná (Copel) and is released only to academic researchers from educational or research institutes for non-commercial purposes.

To be able to download the dataset, please read carefully this license agreement, fill it out and send it back to Professor David Menotti ([email protected]). The license agreement MUST be reviewed and signed by the individual or entity authorized to make legal commitments on behalf of the institution or corporation (e.g., Department/Administrative Head, or similar). We cannot accept licenses signed by students or faculty members.

Citation

If you use the UFPR-ADMR-v2 dataset in your research, please cite our paper:

  • G. Salomon, R. Laroca, D. Menotti, “Image-based Automatic Dial Meter Reading in Unconstrained Scenarios,” arXiv preprint, arXiv:2201.02850, pp. 1-10, 2022. [arXiv]
@article{salomon2022image,
  title = {Image-based Automatic Dial Meter Reading in Unconstrained Scenarios},
  author={G. {Salomon} and R. {Laroca} and D. {Menotti}}, 
  year = {2022},
  journal = {arXiv preprint},
  volume = {arXiv:2201.02850},
  number = {},
  pages = {1-10}
}

You may also be interested in the conference version of this paper, where we introduced the UFPR-ADMR-v1 dataset:

  • G. Salomon, R. Laroca, D. Menotti, “Deep Learning for Image-based Automatic Dial Meter Reading: Dataset and Baselines” in International Joint Conference on Neural Networks (IJCNN), July 2020, pp. 1–8. [IEEE Xplore] [arXiv]

Related publications

A list of all papers on AMR published by us can be seen here.

Contact

Please contact Professor David Menotti ([email protected]) with questions or comments.

Owner
Gabriel Salomon
just me
Gabriel Salomon
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
A Comparative Review of Recent Kinect-Based Action Recognition Algorithms (TIP2020, Matlab codes)

A Comparative Review of Recent Kinect-Based Action Recognition Algorithms This repo contains: the HDG implementation (Matlab codes) for 'Analysis and

Lei Wang 5 Oct 22, 2022
EmoTag helps you train emotion detection model for Chinese audios

emoTag emoTag helps you train emotion detection model for Chinese audios. Environment pip install -r requirement.txt Data We used Emotional Speech Dat

_zza 4 Sep 07, 2022
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Kushal Shingote 2 Feb 10, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022