Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Overview

UvA Deep Learning Tutorials

Note: To look at the notebooks in a nicer format, visit our RTD website: https://uvadlc-notebooks.readthedocs.io/en/latest/

Course website: https://uvadlc.github.io/
Course edition: Fall 2020 (Oct. 26 - Dec. 14)
Recordings: YouTube Playlist
Author: Phillip Lippe

For this year's course edition, we created a series of Jupyter notebooks that are designed to help you understanding the "theory" from the lectures by seeing corresponding implementations. We will visit various topics such as optimization techniques, graph neural networks, adversarial attacks and normalizing flows (for a full list, see below). The notebooks are there to help you understand the material and teach you details of the PyTorch framework, including PyTorch Lightning.

The notebooks are presented in the second hour of each lecture slot. During the tutorial sessions, we will present the content and explain the implementation of the notebooks. You can decide yourself rather you just want to look at the filled notebook, want to try it yourself, or code along during the practical session. We do not have any mandatory assignments on which you would be graded or similarly. However, we encourage you to get familiar with the notebooks and experiment or extend them yourself.

How to run the notebooks

On this website, you will find the notebooks exported into a HTML format so that you can read them from whatever device you prefer. However, we suggest that you also give them a try and run them yourself. There are three main ways of running the notebooks we recommend:

  • Locally on CPU: All notebooks are stored on the github repository that also builds this website. You can find them here: https://github.com/phlippe/uvadlc_notebooks/tree/master/docs/tutorial_notebooks. The notebooks are designed that you can execute them on common laptops without the necessity of a GPU. We provide pretrained models that are automatically downloaded when running the notebooks, or can manually be downloaoded from this Google Drive. The required disk space for the pretrained models and datasets is less than 1GB. To ensure that you have all the right python packages installed, we provide a conda environment in the same repository.

  • Google Colab: If you prefer to run the notebooks on a different platform than your own computer, or want to experiment with GPU support, we recommend using Google Colab. Each notebook on this documentation website has a badge with a link to open it on Google Colab. Remember to enable GPU support before running the notebook (Runtime -> Change runtime type). Each notebook can be executed independently, and doesn't require you to connect your Google Drive or similar. However, when closing the session, changes might be lost if you don't save it to your local computer or have copied the notebook to your Google Drive beforehand.

  • Lisa cluster: If you want to train your own (larger) neural networks based on the notebooks, you can make use of the Lisa cluster. However, this is only suggested if you really want to train a new model, and use the other two options to go through the discussion and analysis of the models. Lisa might not allow you with your student account to run jupyter notebooks directly on the gpu_shared partition. Instead, you can first convert the notebooks to a script using jupyter nbconvert --to script ...ipynb, and then start a job on Lisa for running the script. A few advices when running on Lisa:

    • Disable the tqdm statements in the notebook. Otherwise your slurm output file might overflow and be several MB large. In PyTorch Lightning, you can do this by setting progress_bar_refresh_rate=0 in the trainer.
    • Comment out the matplotlib plotting statements, or change :code:plt.show() to plt.savefig(...).

Tutorial-Lecture alignment

We will discuss 12 tutorials in total, each focusing on a different aspect of Deep Learning. The tutorials are spread across lectures, and we tried to cover something from every area. You can align the tutorials with the lectures as follows:

  • Lecture 1: Introduction to Deep Learning

    • Guide 1: Working with the Lisa cluster
    • Tutorial 2: Introduction to PyTorch
  • Lecture 2: Modular Learning

    • Tutorial 3: Activation functions
  • Lecture 3: Deep Learning Optimizations

    • Tutorial 4: Optimization and Initialization
  • Lecture 4: Convolutional Neural Networks

  • Lecture 5: Modern ConvNets

    • Tutorial 5: Inception, ResNet and DenseNet
  • Lecture 6: Recurrent Neural Networks

    • Tutorial 6: Transformers and Multi-Head Attention
  • Lecture 7: Graph Neural Networks

    • Tutorial 7: Graph Neural Networks
  • Lecture 8: Deep Generative Models

    • Tutorial 8: Deep Energy Models
  • Lecture 9: Deep Variational Inference

    • Tutorial 9: Deep Autoencoders
  • Lecture 10: Generative Adversarial Networks

    • Tutorial 10: Adversarial Attacks
  • Lecture 11: Advanced Generative Models

    • Tutorial 11: Normalizing Flows
    • Tutorial 12: Autoregressive Image Modeling
  • Lecture 12: Deep Stochastic Models

  • Lecture 13: Bayesian Deep Learning

  • Lecture 14: Deep Dynamics

Feedback, Questions or Contributions

This is the first time we present these tutorials during the Deep Learning course. As with any other project, small bugs and issues are expected. We appreciate any feedback from students, whether it is about a spelling mistake, implementation bug, or suggestions for improvements/additions to the notebooks. Please use the following link to submit feedback, or feel free to reach out to me directly per mail (p dot lippe at uva dot nl), or grab me during any TA session.

Owner
Phillip Lippe
PhD student at University of Amsterdam, QUVA Lab
Phillip Lippe
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022