DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

Related tags

Deep LearningDropNAS
Overview

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS, a grouped operation dropout method for one-level DARTS, with better and more stable performance.

Requirements

  • python-3.5.2
  • pytorch-1.0.0
  • torchvision-0.2.0
  • tensorboardX-2.0
  • graphviz-0.14

How to use the code

  • Search
# with the default setting presented in paper, but you may need to adjust the batch size to prevent OOM 
python3 search.py --name cifar10_example --dataset CIFAR10 --gpus 0
  • Augment
# use the genotype we found on CIFAR10

python3 augment.py --name cifar10_example --dataset CIFAR10 --gpus 0 --genotype "Genotype(
    normal=[[('sep_conv_3x3', 1), ('skip_connect', 0)], [('sep_conv_3x3', 1), ('sep_conv_3x3', 0)], [('sep_conv_3x3', 1), ('sep_conv_3x3', 0)], [('dil_conv_5x5', 4), ('dil_conv_3x3', 1)]],
    normal_concat=range(2, 6),
    reduce=[[('max_pool_3x3', 0), ('sep_conv_5x5', 1)], [('dil_conv_5x5', 2), ('sep_conv_5x5', 1)], [('dil_conv_5x5', 3), ('dil_conv_5x5', 2)], [('dil_conv_5x5', 3), ('dil_conv_5x5', 4)]],
    reduce_concat=range(2, 6)
)"

Results

The following results in CIFAR-10/100 are obtained with the default setting. More results with different arguements and other dataset like ImageNet can be found in the paper.

Dataset Avg Acc (%) Best Acc (%)
CIFAR-10 97.42±0.14 97.74
CIFAR-100 83.05±0.41 83.61

The performance of DropNAS and one-level DARTS across different search spaces on CIFAR-10/100.

Dataset Search Space DropNAS Acc (%) one-level DARTS Acc (%)
CIFAR-10 3-skip 97.32±0.10 96.81±0.18
1-skip 97.33±0.11 97.15±0.12
original 97.42±0.14 97.10±0.16
CIFAR-100 3-skip 83.03±0.35 82.00±0.34
1-skip 83.53±0.19 82.27±0.25
original 83.05±0.41 82.73±0.36

The test error of DropNAS on CIFAR-10 when different operation groups are applied with different drop path rates.

r_p=1e-5 r_p=3e-5 r_p=1e-4
r_np=1e-5 97.40±0.16 97.28±0.04 97.36±0.12
r_np=3e-5 97.36±0.11 97.42±0.14 97.31±0.05
r_np=1e-4 97.35±0.07 97.31±0.10 97.37±0.16

Found Architectures

cifar10-normal cifar10-reduce
CIFAR-10

cifar100-normal cifar100-reduce
CIFAR100

Reference

[1] https://github.com/quark0/darts (official implementation of DARTS)

[2] https://github.com/khanrc/pt.darts

[3] https://github.com/susan0199/StacNAS (feature map code used in our paper)

Owner
weijunhong
weijunhong
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022
Neural Oblivious Decision Ensembles

Neural Oblivious Decision Ensembles A supplementary code for anonymous ICLR 2020 submission. What does it do? It learns deep ensembles of oblivious di

25 Sep 21, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
Official PyTorch implementation of "Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble" (NeurIPS'21)

Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble This is the code for reproducing the results of the paper Uncertainty-Bas

43 Nov 23, 2022
This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection This is a PyTorch implementation of the LipForensics paper. This is an U

Minha Kim 2 May 11, 2022
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022