The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

Overview


Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compliance with the code license.

Overview

This is a comprehensive framework for object detection featuring:

  • 2D + 3D implementations of prevalent object detectors: e.g. Mask R-CNN [1], Retina Net [2], Retina U-Net [3].
  • Modular and light-weight structure ensuring sharing of all processing steps (incl. backbone architecture) for comparability of models.
  • training with bounding box and/or pixel-wise annotations.
  • dynamic patching and tiling of 2D + 3D images (for training and inference).
  • weighted consolidation of box predictions across patch-overlaps, ensembles, and dimensions [3].
  • monitoring + evaluation simultaneously on object and patient level.
  • 2D + 3D output visualizations.
  • integration of COCO mean average precision metric [5].
  • integration of MIC-DKFZ batch generators for extensive data augmentation [6].
  • easy modification to evaluation of instance segmentation and/or semantic segmentation.

[1] He, Kaiming, et al. "Mask R-CNN" ICCV, 2017
[2] Lin, Tsung-Yi, et al. "Focal Loss for Dense Object Detection" TPAMI, 2018.
[3] Jaeger, Paul et al. "Retina U-Net: Embarrassingly Simple Exploitation of Segmentation Supervision for Medical Object Detection" , 2018

[5] https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/cocoeval.py
[6] https://github.com/MIC-DKFZ/batchgenerators

How to cite this code

Please cite the original publication [3].

Installation

Setup package in a virtual environment:

git clone https://github.com/pfjaeger/medicaldetectiontoolkit.git .
cd medicaldetectiontoolkit
virtualenv -p python3.6 venv
source venv/bin/activate
pip3 install -e .

We use two cuda functions: Non-Maximum Suppression (taken from pytorch-faster-rcnn and added adaption for 3D) and RoiAlign (taken from RoiAlign, fixed according to this bug report, and added adaption for 3D). In this framework, they come pre-compile for TitanX. If you have a different GPU you need to re-compile these functions:

GPU arch
TitanX sm_52
GTX 960M sm_50
GTX 1070 sm_61
GTX 1080 (Ti) sm_61
cd cuda_functions/nms_xD/src/cuda/
nvcc -c -o nms_kernel.cu.o nms_kernel.cu -x cu -Xcompiler -fPIC -arch=[arch]
cd ../../
python build.py
cd ../

cd cuda_functions/roi_align_xD/roi_align/src/cuda/
nvcc -c -o crop_and_resize_kernel.cu.o crop_and_resize_kernel.cu -x cu -Xcompiler -fPIC -arch=[arch]
cd ../../
python build.py
cd ../../

Prepare the Data

This framework is meant for you to be able to train models on your own data sets. Two example data loaders are provided in medicaldetectiontoolkit/experiments including thorough documentation to ensure a quick start for your own project. The way I load Data is to have a preprocessing script, which after preprocessing saves the Data of whatever data type into numpy arrays (this is just run once). During training / testing, the data loader then loads these numpy arrays dynamically. (Please note the Data Input side is meant to be customized by you according to your own needs and the provided Data loaders are merely examples: LIDC has a powerful Dataloader that handles 2D/3D inputs and is optimized for patch-based training and inference. Toy-Experiments have a lightweight Dataloader, only handling 2D without patching. The latter makes sense if you want to get familiar with the framework.).

Execute

  1. Set I/O paths, model and training specifics in the configs file: medicaldetectiontoolkit/experiments/your_experiment/configs.py

  2. Train the model:

    python exec.py --mode train --exp_source experiments/my_experiment --exp_dir path/to/experiment/directory       
    

    This copies snapshots of configs and model to the specified exp_dir, where all outputs will be saved. By default, the data is split into 60% training and 20% validation and 20% testing data to perform a 5-fold cross validation (can be changed to hold-out test set in configs) and all folds will be trained iteratively. In order to train a single fold, specify it using the folds arg:

    python exec.py --folds 0 1 2 .... # specify any combination of folds [0-4]
    
  3. Run inference:

    python exec.py --mode test --exp_dir path/to/experiment/directory 
    

    This runs the prediction pipeline and saves all results to exp_dir.

Models

This framework features all models explored in [3] (implemented in 2D + 3D): The proposed Retina U-Net, a simple but effective Architecture fusing state-of-the-art semantic segmentation with object detection,


also implementations of prevalent object detectors, such as Mask R-CNN, Faster R-CNN+ (Faster R-CNN w\ RoIAlign), Retina Net, U-Faster R-CNN+ (the two stage counterpart of Retina U-Net: Faster R-CNN with auxiliary semantic segmentation), DetU-Net (a U-Net like segmentation architecture with heuristics for object detection.)



Training annotations

This framework features training with pixelwise and/or bounding box annotations. To overcome the issue of box coordinates in data augmentation, we feed the annotation masks through data augmentation (create a pseudo mask, if only bounding box annotations provided) and draw the boxes afterwards.


The framework further handles two types of pixel-wise annotations:

  1. A label map with individual ROIs identified by increasing label values, accompanied by a vector containing in each position the class target for the lesion with the corresponding label (for this mode set get_rois_from_seg_flag = False when calling ConvertSegToBoundingBoxCoordinates in your Data Loader).
  2. A binary label map. There is only one foreground class and single lesions are not identified. All lesions have the same class target (foreground). In this case the Dataloader runs a Connected Component Labelling algorithm to create processable lesion - class target pairs on the fly (for this mode set get_rois_from_seg_flag = True when calling ConvertSegToBoundingBoxCoordinates in your Data Loader).

Prediction pipeline

This framework provides an inference module, which automatically handles patching of inputs, and tiling, ensembling, and weighted consolidation of output predictions:




Consolidation of predictions (Weighted Box Clustering)

Multiple predictions of the same image (from test time augmentations, tested epochs and overlapping patches), result in a high amount of boxes (or cubes), which need to be consolidated. In semantic segmentation, the final output would typically be obtained by averaging every pixel over all predictions. As described in [3], weighted box clustering (WBC) does this for box predictions:





Visualization / Monitoring

By default, loss functions and performance metrics are monitored:




Histograms of matched output predictions for training/validation/testing are plotted per foreground class:



Input images + ground truth annotations + output predictions of a sampled validation abtch are plotted after each epoch (here 2D sampled slice with +-3 neighbouring context slices in channels):



Zoomed into the last two lines of the plot:


License

This framework is published under the Apache License Version 2.0.

Owner
MIC-DKFZ
Division of Medical Image Computing, German Cancer Research Center (DKFZ)
MIC-DKFZ
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download

Bubbliiiing 31 Nov 25, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
Match SafeGraph POIs with Data collected through a cultural resource survey in Washington DC.

Match SafeGraph POI data with Cultural Resource Places in Washington DC Match SafeGraph POIs with Data collected through a cultural resource survey in

Changjie Chen 1 Jan 05, 2022
A repo for Causal Imitation Learning under Temporally Correlated Noise

CausIL A repo for Causal Imitation Learning under Temporally Correlated Noise. Running Experiments To re-train an expert, run: python experts/train_ex

Gokul Swamy 5 Nov 01, 2022
Steerable discovery of neural audio effects

Steerable discovery of neural audio effects Christian J. Steinmetz and Joshua D. Reiss Abstract Applications of deep learning for audio effects often

Christian J. Steinmetz 182 Dec 29, 2022
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
wlad 2 Dec 19, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022