Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Overview

Visual Transformer for Facial Emotion Recognition (FER)

alternatetext alternatetext alternatetext alternatetext

This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recognition (FER) task. Project is interally on Python Notebook, hosted on Google Colab with a runtime environment given by NVIDIA P100 setup.

Dataset

Dataset is formed by 8 different classes integrated by 3 different subsets:

  1. FER-2013: It contains approximately 35,000 facial RGB images of different expressions with size restricted to 48×48, and the main labels of it can be divided into 7 types: 0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad, 5=Surprise, 6=Neutral. The Disgust expression has the minimal number of images – 600, while other labels have nearly 5,000 samples each.
  2. CK+: The Extended Cohn-Kanade (CK+) dataset contains some images extrapolated from 593 video sequences from a total of 123 different subjects, ranging from 18 to 50 years of age with a variety of genders and heritage. Each video shows a facial shift from the neutral expression to a targeted peak expression, recorded at 30 frames per second (FPS) with a resolution of either 640x490 or 640x480 pixels. Unfortunately, we don't have the entire generated datasets but we stored only 1000 images with high variance from a kaggle repository.
  3. AffectNet: It is a large facial expression dataset with 41.000 images classified in eight categories (neutral, happy, angry, sad, fear, surprise, disgust, contempt) of facial expressions along with the intensity of valence and arousal.

Data loading, integration and analysis are in the first part of the ViT-Emotion-Recognition.ipynb notebook. The result dataset is an integration divided by two subset (train an val folder) with 8 subfolder with the scope of the class label.

Data Management

Given an eterogeneous dataset on a fine-tuned transformer, we had to manage some image features:

  • Data Scaling: Pre-trained models are transformers with different configurations that train them on ImageNet dataset for the object detection with images on 224x224. We use the same scale and convert input data to this size.
  • Data Channels: We use RGB channels for each images for the same reason of the previous point.
  • Data Augmentation: We use brightness, rotation, scaling, translation and zooming augmentation to improve the amount of the samples and balance the dataset classes variation.

Model

Overview of the model: The input image is split into fixed-sized patches; the embedding phase is preceded by a convolutional layer with a kernel 16x16 with a stride of 16x16. The output of the convolution is then used for the embedding phase where the resulting vector is given by the sum of the position embedding and a linear embedding in a projection space of 768 dimensions. The embedded patches are then processed by a set of 11 sequential Transformer Encoders. For the classification task, the final layer is a linear layer with a 8 dimensional output for our eight emotions. The model we rely on is pretrained on ImageNet and finetuned with the datased described above.

Source: https://github.com/google-research/vision_transformer

Authors

  • Andrea Gurioli (@andreagurioli1995)
  • Mario Sessa (@kode-git)

License

© Apache License Version 2.0, January 2004

You might also like...
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel gating to capture and interpolate complex motion trajectories between frames to generate realistic high frame rate videos. This repository contains original source code for the paper accepted to CVPR 2021.

Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Automatic Attendance marker for LMS Practice School Division, BITS Pilani
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

Comments
  • Pre-processing phase removes some images

    Pre-processing phase removes some images

    • After the Data Analysis on the AVFER, data from the splitting phase is different after the pre-processing, we need to check

      • Check the removing of png can influence the number
      • Control if there are some changes after the reshaping
      • Be care about the possible miss-indentation of the os.remove(fl)

    I need to run again the data integration and data analysis of the AVFER before test features variation on the pre-processing phase.

    bug 
    opened by kode-git 2
Releases(0.3.12)
Owner
Mario Sessa
Computer Scientist for /dev/null. Master Student in Computer Science.
Mario Sessa
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.

Interpreting Language Models Through Knowledge Graph Extraction Idea: How do we interpret what a language model learns at various stages of training?

EPFL Machine Learning and Optimization Laboratory 9 Oct 25, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
Python wrapper to access the amazon selling partner API

PYTHON-AMAZON-SP-API Amazon Selling-Partner API If you have questions, please join on slack Contributions very welcome! Installation pip install pytho

Michael Primke 330 Jan 06, 2023
Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks This is our Pytorch implementation for the paper: Zirui Zhu, Chen Gao, Xu C

Zirui Zhu 3 Dec 30, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021)

Flexible Networks for Learning Physical Dynamics of Deformable Objects (2021) By Jinhyung Park, Dohae Lee, In-Kwon Lee from Yonsei University (Seoul,

Jinhyung Park 0 Jan 09, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022