face property detection pytorch

Overview

face-property-detection-pytorch

Python Python torch

1. Data structure

The structure of landmarks_jpg is like below:

|--celeba1
|----celeba_face
|------000001.jpg
|------000002.jpg
|------ .....
|------020000.jpg
|----celeba_raw_pic
|------000001.jpg
|------000002.jpg
|------ .....
|------020000.jpg

The celeba_raw_pic is the original picture that we do not make any processing. The celeba_face is the face region of the raw pricture.

img2.png

figure1: raw picture

img1.png

figure2: face region of raw picture

You can run the below command to finish the data processing.

python3 create_data.py 

This command will use MTCNN model to extract the face region. However, some pictures cannot be extracted by the model. For my test, I can not cut out the face region of the below picture.

# file 000199.jpg cannot detect face
# file 001401.jpg cannot detect face
# file 002214.jpg cannot detect face
# file 002432.jpg cannot detect face
# file 002920.jpg cannot detect face
# file 003928.jpg cannot detect face
# file 003946.jpg cannot detect face
# file 004932.jpg cannot detect face
# file 005283.jpg cannot detect face
# file 006010.jpg cannot detect face
# file 006531.jpg cannot detect face
# file 007726.jpg cannot detect face
# file 008287.jpg cannot detect face
# file 011529.jpg cannot detect face
# file 011793.jpg cannot detect face
# file 013374.jpg cannot detect face
# file 013654.jpg cannot detect face
# file 014999.jpg cannot detect face
# file 016530.jpg cannot detect face
# file 016797.jpg cannot detect face
# file 017282.jpg cannot detect face
# file 017586.jpg cannot detect face
# file 018309.jpg cannot detect face
# file 018599.jpg cannot detect face
# file 018884.jpg cannot detect face
# file 019205.jpg cannot detect face
# file 019377.jpg cannot detect face

So I replace them with 000001.jpg. Also, I revise the label file list_attr_celeba.txt. Replace the issue items with 000001.jpg and I get the list_attr_celeba-face.txt You can use BeyondCompare to diff the changes that I make img.png

You can download the data from the cloud drive:

name link
celeba_face.zip https://pan.baidu.com/s/15nsbvla8eCy_n3EsUMH36Q code:5ipn
celeba_raw_pic.zip https://pan.baidu.com/s/1WM3Zo3zLfKsAFvrDl03suQ code:3q70

2. how to train

First, install the third-party package:

pip install -r requirements.txt

Then just simply run the below command:

python3 train.py

if you want to use the pretrained models, you can revise the below code as you need:

load_pretrain_model = False
model_dir=r".\pretrain_models\model-resnet-50-justface-state.ptn"
if load_pretrain_model:
    checkpoint = torch.load(model_dir)
    model.load_state_dict(checkpoint)

3. how to test

Revise the test file name in predict.py and then run the below command:

python3 predict.py
Owner
i am x
i am x
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
State of the Art Neural Networks for Generative Deep Learning

pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U

Ritvik Rastogi 8 Sep 29, 2022
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
Perception-aware multi-sensor fusion for 3D LiDAR semantic segmentation (ICCV 2021)

Perception-Aware Multi-Sensor Fusion for 3D LiDAR Semantic Segmentation (ICCV 2021) [中文|EN] 概述 本工作主要探索一种高效的多传感器(激光雷达和摄像头)融合点云语义分割方法。现有的多传感器融合方法主要将点云投影

ICE 126 Dec 30, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
🌳 A Python-inspired implementation of the Optimum-Path Forest classifier.

OPFython: A Python-Inspired Optimum-Path Forest Classifier Welcome to OPFython. Note that this implementation relies purely on the standard LibOPF. Th

Gustavo Rosa 30 Jan 04, 2023
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
My coursework for Machine Learning (2021 Spring) at National Taiwan University (NTU)

Machine Learning 2021 Machine Learning (NTU EE 5184, Spring 2021) Instructor: Hung-yi Lee Course Website : (https://speech.ee.ntu.edu.tw/~hylee/ml/202

100 Dec 26, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023