HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

Overview

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

[toc]

1. Introduction

This repository provides the code for our paper at TheWebConf 2022:

Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval. Jinpeng Wang, Bin Chen, Dongliang Liao, Ziyun Zeng, Gongfu Li, Shu-Tao Xia, Jin Xu. [arXiv].

Our proposed Hybrid Contrastive Quantization (HCQ) is the first quantization learning method for cross-view (e.g., text-to-video) retrieval, which learns both coarse-grained and fine-grained quantizations with transformers. Experiments on MSRVTT, LSMDC and ActivityNet Captions datasets demonstrate that it can achieve competitive performance with state-of-the-art non-compressed retrieval methods while showing high efficiency in storage and computation.

In the following, we will guide you how to use this repository step by step. 🤗

2. Preparation

git clone https://github.com/gimpong/WWW22-HCQ.git

2.1 Requirements

  • python 3.7.4
  • gensim 4.1.2
  • h5py 3.6.0
  • numpy 1.17.3
  • pandas 1.2.3
  • pytorch-warmup 0.0.4
  • scikit-learn 0.23.0
  • scipy 1.6.1
  • tensorboardX 2.4.1
  • torch 1.6.0+cu101
  • transformers 3.1.0
cd WWW22-HCQ
# Install the requirements
pip install -r requirements.txt

We conduct each training experiment on a single NVIDIA® Tesla® V100 GPU (32 GB).

2.2 Download the features

Before running the code, we need to download the datasets and arrange them in the "data" directory properly. We use the video features provided by the authors of MMT. These features can be downloaded from this page by running the following commands:

# Create and move to WWW22-HCQ/data directory
cd data
# Download the video features
wget http://pascal.inrialpes.fr/data2/vgabeur/video-features/MSRVTT.tar.gz
wget http://pascal.inrialpes.fr/data2/vgabeur/video-features/activity-net.tar.gz
wget http://pascal.inrialpes.fr/data2/vgabeur/video-features/LSMDC.tar.gz
# Extract the video features
tar -xvf MSRVTT.tar.gz
tar -xvf activity-net.tar.gz
tar -xvf LSMDC.tar.gz

3. Training and Evaluation

3.1 Training from scratch

Let us take "training HCQ on MSRVTT dataset ('1k-A' split)" as an example:

# working directory: WWW22-HCQ/
python -m train --config configs/HCQ_MSRVTT_1kA.json

Expected results:

MSRVTT_jsfusion_test:
 t2v_metrics/R1/final_eval: 25.9
 t2v_metrics/R5/final_eval: 54.8
 t2v_metrics/R10/final_eval: 69.0
 t2v_metrics/R50/final_eval: 88.8
 t2v_metrics/MedR/final_eval: 5.0
 t2v_metrics/MeanR/final_eval: 28.062
 t2v_metrics/geometric_mean_R1-R5-R10/final_eval: 46.09386629981193
 v2t_metrics/R1/final_eval: 26.3
 v2t_metrics/R5/final_eval: 57.0
 v2t_metrics/R10/final_eval: 70.1
 v2t_metrics/R50/final_eval: 90.0
 v2t_metrics/MedR/final_eval: 4.0
 v2t_metrics/MeanR/final_eval: 25.1535
 v2t_metrics/geometric_mean_R1-R5-R10/final_eval: 47.18995255588879

After training, a folder with the same name as the configuration json file (e.g., "HCQ_MSRVTT_1kA") will be generated under WWW22-HCQ/exps/, which contains the model checkpoints, logs, tensorboard files, and so on.

For reproducing other experiments, please see the following tables. You can just replace the config json path with another in the training command.

3.1.1 Main results of HCQ (reported in Table 1-3 in our paper)

Model Dataset (+split) Config json Log Text-to-Video Retrieval Video-to-Text Retrieval
[email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10} [email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10}
HCQ MSRVTT (1k-A) HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt  25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
MSRVTT (1k-B) HCQ_MSRVTT_1kB.json HCQ_MSRVTT_1kB.txt  22.50 51.50 65.90 86.10 5 33.65 42.43 23.70 52.20 66.90 88.10 5 29.30 43.58
MSRVTT (Full) HCQ_MSRVTT_full.json HCQ_MSRVTT_full.txt  15.15 38.53 51.00 81.34 10 46.22 30.99 18.26 44.88 59.06 87.16 7 30.96 36.45
LSMDC HCQ_LSMDC.json HCQ_LSMDC.txt  14.50 33.60 43.10 68.20 18.5 75.95 27.59 13.70 33.20 42.80 66.10 17 74.28 26.90
ActivityNet Captions HCQ_ActivityNet.json HCQ_ActivityNet.txt  22.19 53.69 70.12 91.21 5 30.71 43.72 23.00 54.85 70.14 91.38 5 29.08 44.56

3.1.2 Result of Hybrid Contrastive Transformer (HCT), Dual Transformer (DT) + DCMH, and DT + JPQ (reported in Table 4 in our paper)

Model Dataset (+split) Config json Log Text-to-Video Retrieval Video-to-Text Retrieval
[email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10} [email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10}
HCT MSRVTT (1k-A) HCT_MSRVTT_1kA.json HCT_MSRVTT_1kA.txt 27.80 58.00 70.00 89.50 4 26.79 48.33 27.30 57.80 72.10 90.60 4 24.38 48.46
MSRVTT (1k-B) HCT_MSRVTT_1kB.json HCT_MSRVTT_1kB.txt 25.70 53.70 67.30 88.30 5 31.09 45.29 24.70 55.50 68.70 88.80 4 25.54 45.50
MSRVTT (Full) HCT_MSRVTT_full.json HCT_MSRVTT_full.txt 16.76 41.87 55.79 82.44 8 44.33 33.95 21.64 50.57 63.88 87.66 5 29.56 41.19
LSMDC HCT_LSMDC.json HCT_LSMDC.txt 16.40 34.10 43.10 69.10 17 72.39 28.89 14.10 33.70 41.40 67.40 18 73.54 26.99
ActivityNet Captions HCT_ActivityNet.json HCT_ActivityNet.txt 23.12 54.95 71.14 92.64 5 24.82 44.88 22.94 55.81 70.84 92.29 4 25.35 44.93
DT+DCMH MSRVTT (1k-A) DCMH_MSRVTT_1kA.json DCMH_MSRVTT_1kA.txt 19.00 48.40 62.20 85.30 6 32.40 38.53 20.00 50.20 63.30 84.90 5.5 31.69 39.91
MSRVTT (1k-B) DCMH_MSRVTT_1kB.json DCMH_MSRVTT_1kB.txt 15.80 41.30 57.70 83.30 8 40.42 33.52 16.60 44.10 58.10 84.10 7 37.17 34.91
MSRVTT (Full) DCMH_MSRVTT_full.json DCMH_MSRVTT_full.txt 8.46 28.16 41.51 73.48 15.75 67.90 21.46 9.57 31.30 46.62 78.13 12 55.30 24.08
LSMDC DCMH_LSMDC.json DCMH_LSMDC.txt 10.00 25.80 36.00 66.30 22 75.84 21.02 9.60 25.80 36.40 65.40 22.75 78.37 20.81
ActivityNet Captions DCMH_ActivityNet.json DCMH_ActivityNet.txt 12.34 38.40 55.62 84.62 8.5 63.41 29.76 12.45 39.19 55.52 84.58 8.5 65.43 30.03
DT+JPQ MSRVTT (1k-A) JPQ_MSRVTT_1kA.json JPQ_MSRVTT_1kA.txt 18.90 46.80 60.80 87.90 6 29.12 37.75 18.20 47.40 63.20 87.80 6 26.63 37.92
MSRVTT (1k-B) JPQ_MSRVTT_1kB.json JPQ_MSRVTT_1kB.txt 14.90 42.50 57.70 86.90 7 33.05 33.18 15.30 43.50 59.10 88.30 7 27.79 34.01
MSRVTT (Full) JPQ_MSRVTT_full.json JPQ_MSRVTT_full.txt 9.30 30.00 43.44 77.49 14 50.00 22.97 11.44 36.29 51.30 82.84 10 37.00 27.72
LSMDC JPQ_LSMDC.json JPQ_LSMDC.txt 9.50 23.40 34.30 63.10 25 80.27 19.68 7.80 22.80 32.80 62.50 27 79.98 18.00
ActivityNet Captions JPQ_ActivityNet.json JPQ_ActivityNet.txt 17.10 46.43 62.38 90.05 6 28.09 36.73 17.67 46.88 62.94 90.14 6 28.21 37.36

3.1.3 Results of HCQ under different hyper-parameters (reported in Figure 6 in our paper)

Experimental subject Dataset (+split) Setting Config json Log Text-to-Video Retrieval Video-to-Text Retrieval
[email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10} [email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10}
L: the number of active cluster(s) in GhostVLAD MSRVTT (1k-A) 1 HCQ_MSRVTT_1kA_L1.json HCQ_MSRVTT_1kA_L1.txt 25.10 54.10 67.30 89.10 5 28.21 45.04 22.70 55.10 67.90 89.90 4 25.35 43.96
3 HCQ_MSRVTT_1kA_L3.json HCQ_MSRVTT_1kA_L3.txt 25.70 52.90 66.90 89.30 5 28.39 44.97 26.70 55.00 68.50 90.50 4 24.20 46.51
7 (default) HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt 25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
15 HCQ_MSRVTT_1kA_L15.json HCQ_MSRVTT_1kA_L15.txt 24.20 54.40 68.10 88.70 5 27.15 44.76 23.60 55.00 69.40 90.60 4 22.79 44.83
31 HCQ_MSRVTT_1kA_L31.json HCQ_MSRVTT_1kA_L31.txt 26.20 54.50 67.90 88.00 5 27.57 45.94 25.00 55.60 69.10 90.00 4 24.38 45.80
MSRVTT (1k-B) 1 HCQ_MSRVTT_1kB_L1.json HCQ_MSRVTT_1kB_L1.txt 22.40 51.70 64.10 87.50 5 30.79 42.03 21.90 52.50 65.90 88.10 5 27.49 42.32
3 HCQ_MSRVTT_1kB_L3.json HCQ_MSRVTT_1kB_L3.txt 23.10 50.60 65.40 87.90 5 31.43 42.44 22.90 51.70 66.50 88.30 5 26.82 42.86
7 (default) HCQ_MSRVTT_1kB.json HCQ_MSRVTT_1kB.txt 22.50 51.50 65.90 86.10 5 33.65 42.43 23.70 52.20 66.90 88.10 5 29.30 43.58
15 HCQ_MSRVTT_1kB_L15.json HCQ_MSRVTT_1kB_L15.txt 22.20 51.50 64.30 87.20 5 30.98 41.89 22.00 52.40 65.50 87.90 5 26.35 42.27
31 HCQ_MSRVTT_1kB_L31.json HCQ_MSRVTT_1kB_L31.txt 23.30 50.40 64.30 86.80 5 34.97 42.27 22.70 53.50 65.20 88.10 5 29.55 42.94
MSRVTT (Full) 1 HCQ_MSRVTT_full_L1.json HCQ_MSRVTT_full_L1.txt 14.31 38.63 52.24 80.94 10 44.35 30.68 17.32 44.98 59.60 86.89 7 31.44 35.95
3 HCQ_MSRVTT_full_L3.json HCQ_MSRVTT_full_L3.txt 14.45 39.16 51.84 80.80 10 45.37 30.84 17.56 46.19 60.37 86.82 6 31.24 36.58
7 (default) HCQ_MSRVTT_full.json HCQ_MSRVTT_full.txt 15.15 38.53 51.00 81.34 10 46.22 30.99 18.26 44.88 59.06 87.16 7 30.96 36.45
15 HCQ_MSRVTT_full_L15.json HCQ_MSRVTT_full_L15.txt 14.01 37.53 51.47 81.74 10 41.04 30.02 16.19 44.08 59.80 86.99 7 29.87 34.94
31 HCQ_MSRVTT_full_L31.json HCQ_MSRVTT_full_L31.txt 14.48 38.56 52.64 81.61 9 43.41 30.86 18.09 45.99 59.67 87.22 7 30.54 36.75
LSMDC 1 HCQ_LSMDC_L1.json HCQ_LSMDC_L1.txt 14.40 31.50 42.50 68.50 17 73.09 26.81 13.00 30.60 40.50 68.10 19 71.16 25.26
3 HCQ_LSMDC_L3.json HCQ_LSMDC_L3.txt 14.00 33.80 44.10 68.30 17 73.91 27.53 12.90 32.80 42.80 68.50 17 71.74 26.26
7 (default) HCQ_LSMDC.json HCQ_LSMDC.txt 14.50 33.60 43.10 68.20 18.5 75.95 27.59 13.70 33.20 42.80 66.10 17 74.28 26.90
15 HCQ_LSMDC_L15.json HCQ_LSMDC_L15.txt 14.10 32.60 41.90 69.80 17 71.28 26.81 13.10 31.40 40.70 68.30 18 71.21 25.58
31 HCQ_LSMDC_L31.json HCQ_LSMDC_L31.txt 12.80 31.90 41.90 68.30 17 72.03 25.77 12.50 32.20 42.00 67.20 17 72.26 25.66
ActivityNet Captions 1 HCQ_ActivityNet_L1.json HCQ_ActivityNet_L1.txt 19.77 50.54 65.77 89.06 5 33.26 40.35 20.03 51.33 66.36 89.40 5 32.14 40.86
3 HCQ_ActivityNet_L3.json HCQ_ActivityNet_L3.txt 20.95 52.21 68.35 90.54 5 30.22 42.13 20.72 53.10 68.70 90.50 5 29.18 42.28
7 (default) HCQ_ActivityNet.json HCQ_ActivityNet.txt 22.19 53.69 70.12 91.21 5 30.71 43.72 23.00 54.85 70.14 91.38 5 29.08 44.56
15 HCQ_ActivityNet_L15.json HCQ_ActivityNet_L15.txt 21.33 52.15 68.07 90.16 5 30.00 42.31 22.07 52.92 68.31 90.46 5 29.26 43.05
31 HCQ_ActivityNet_L31.json HCQ_ActivityNet_L31.txt 20.56 52.45 69.07 89.91 5 31.39 42.07 21.66 52.96 68.60 90.81 5 29.67 42.85
M: the number of sub-codebooks in each quantization module MSRVTT (1k-A) 8 HCQ_MSRVTT_1kA_M8.json HCQ_MSRVTT_1kA_M8.txt 23.00 52.00 65.00 87.00 5 32.93 42.68 21.40 52.40 65.50 88.20 5 30.19 41.88
16 HCQ_MSRVTT_1kA_M16.json HCQ_MSRVTT_1kA_M16.txt 23.40 53.40 68.10 88.00 5 30.89 43.98 23.00 55.30 68.60 89.60 4 26.62 44.35
32 (default) HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt 25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
64 HCQ_MSRVTT_1kA_M64.json HCQ_MSRVTT_1kA_M64.txt 27.20 56.80 69.10 89.30 4 26.93 47.44 26.10 58.10 71.40 90.70 4 23.82 47.66
MSRVTT (1k-B) 8 HCQ_MSRVTT_1kB_M8.json HCQ_MSRVTT_1kB_M8.txt 20.10 47.00 60.60 84.10 6.75 37.97 38.54 18.90 47.90 63.10 86.40 6 36.00 38.51
16 HCQ_MSRVTT_1kB_M16.json HCQ_MSRVTT_1kB_M16.txt 22.50 49.50 62.70 85.90 6 33.82 41.18 21.10 52.10 65.60 87.10 5 32.43 41.62
32 (default) HCQ_MSRVTT_1kB.json HCQ_MSRVTT_1kB.txt 22.50 51.50 65.90 86.10 5 33.65 42.43 23.70 52.20 66.90 88.10 5 29.30 43.58
64 HCQ_MSRVTT_1kB_M64.json HCQ_MSRVTT_1kB_M64.txt 24.50 51.60 66.20 87.70 5 31.31 43.74 23.60 54.30 67.40 88.80 4.75 27.56 44.20
MSRVTT (Full) 8 HCQ_MSRVTT_full_M8.json HCQ_MSRVTT_full_M8.txt 11.61 33.44 46.86 75.82 12 62.06 26.30 11.91 36.99 51.77 82.31 10 44.63 28.36
16 HCQ_MSRVTT_full_M16.json HCQ_MSRVTT_full_M16.txt 12.81 36.45 50.17 79.06 10 52.58 28.61 14.55 41.07 55.85 84.75 8 37.39 32.20
32 (default) HCQ_MSRVTT_full.json HCQ_MSRVTT_full.txt 15.15 38.53 51.00 81.34 10 46.22 30.99 18.26 44.88 59.06 87.16 7 30.96 36.45
64 HCQ_MSRVTT_full_M64.json HCQ_MSRVTT_full_M64.txt 16.02 40.97 54.25 83.01 8 40.48 32.90 19.16 48.26 62.94 88.70 6 26.65 38.76
LSMDC 8 HCQ_LSMDC_M8.json HCQ_LSMDC_M8.txt 12.60 29.00 38.60 64.30 22 84.53 24.16 10.40 29.20 39.10 64.20 21 78.32 22.81
16 HCQ_LSMDC_M16.json HCQ_LSMDC_M16.txt 13.20 31.10 39.40 66.50 19 79.15 25.29 12.70 31.60 39.90 65.30 21 77.42 25.21
32 (default) HCQ_LSMDC.json HCQ_LSMDC.txt 14.50 33.60 43.10 68.20 18.5 75.95 27.59 13.70 33.20 42.80 66.10 17 74.28 26.90
64 HCQ_LSMDC_M64.json HCQ_LSMDC_M64.txt 14.80 33.00 43.60 69.10 16 72.80 27.72 14.10 32.30 40.80 67.40 19 72.64 26.49
ActivityNet Captions 8 HCQ_ActivityNet_M8.json HCQ_ActivityNet_M8.txt 18.77 48.44 65.08 88.75 6 39.86 38.97 18.63 48.69 65.24 89.30 6 38.20 38.97
16 HCQ_ActivityNet_M16.json HCQ_ActivityNet_M16.txt 20.56 51.86 67.93 89.89 5 35.07 41.68 20.68 52.10 68.09 90.44 5 32.72 41.87
32 (default) HCQ_ActivityNet.json HCQ_ActivityNet.txt 22.19 53.69 70.12 91.21 5 30.71 43.72 23.00 54.85 70.14 91.38 5 29.08 44.56
64 HCQ_ActivityNet_M64.json HCQ_ActivityNet_M64.txt 22.96 54.59 70.80 91.80 5 26.29 44.60 23.61 55.28 70.80 92.03 4 25.74 45.21
Batch size MSRVTT (1k-A) 16 HCQ_MSRVTT_1kA_bs16.json HCQ_MSRVTT_1kA_bs16.txt 24.20 53.40 67.40 89.90 5 25.86 44.33 23.60 54.10 67.60 89.60 4 22.96 44.19
32 HCQ_MSRVTT_1kA_bs32.json HCQ_MSRVTT_1kA_bs32.txt 24.20 54.00 67.20 89.90 5 27.50 44.45 24.00 54.30 66.90 90.10 4 25.09 44.34
64 HCQ_MSRVTT_1kA_bs64.json HCQ_MSRVTT_1kA_bs64.txt 26.20 55.90 67.90 88.70 4 26.67 46.33 25.50 55.80 69.00 89.90 4 23.37 46.13
128 (default) HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt 25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
256 HCQ_MSRVTT_1kA_bs256.json HCQ_MSRVTT_1kA_bs256.txt 25.50 55.30 67.50 89.20 4 26.80 45.66 26.00 55.80 68.70 90.50 4 23.47 46.36
MSRVTT (1k-B) 16 HCQ_MSRVTT_1kB_bs16.json HCQ_MSRVTT_1kB_bs16.txt 22.00 49.40 64.50 87.60 6 31.45 41.23 18.50 51.80 66.20 89.60 5 26.30 39.88
32 HCQ_MSRVTT_1kB_bs32.json HCQ_MSRVTT_1kB_bs32.txt 22.60 49.20 65.10 87.10 6 32.03 41.68 21.40 52.30 65.90 88.20 5 28.20 41.94
64 HCQ_MSRVTT_1kB_bs64.json HCQ_MSRVTT_1kB_bs64.txt 23.60 50.70 64.60 86.60 5 33.26 42.60 21.10 51.60 64.60 89.00 5 28.00 41.28
128 (default) HCQ_MSRVTT_1kB.json HCQ_MSRVTT_1kB.txt 22.50 51.50 65.90 86.10 5 33.65 42.43 23.70 52.20 66.90 88.10 5 29.30 43.58
256 HCQ_MSRVTT_1kB_bs256.json HCQ_MSRVTT_1kB_bs256.txt 22.50 50.20 63.80 87.00 5 30.96 41.61 21.30 52.40 65.90 88.30 5 27.50 41.90
MSRVTT (Full) 16 HCQ_MSRVTT_full_bs16.json HCQ_MSRVTT_full_bs16.txt 13.08 37.96 52.91 82.04 9 41.76 29.72 15.95 42.44 57.59 86.09 8 31.76 33.91
32 HCQ_MSRVTT_full_bs32.json HCQ_MSRVTT_full_bs32.txt 13.75 38.39 52.37 80.80 10 45.51 30.24 16.39 44.58 58.86 86.29 7 32.54 35.04
64 HCQ_MSRVTT_full_bs64.json HCQ_MSRVTT_full_bs64.txt 14.65 39.20 52.98 82.27 9 44.13 31.22 17.69 46.59 61.10 87.83 6 31.56 36.93
128 (default) HCQ_MSRVTT_full.json HCQ_MSRVTT_full.txt 15.15 38.53 51.00 81.34 10 46.22 30.99 18.26 44.88 59.06 87.16 7 30.96 36.45
256 HCQ_MSRVTT_full_bs256.json HCQ_MSRVTT_full_bs256.txt 14.21 39.06 52.47 82.81 9 40.74 30.77 16.92 46.15 59.70 87.63 7 28.24 35.99
LSMDC 16 HCQ_LSMDC_bs16.json HCQ_LSMDC_bs16.txt 12.30 29.70 39.40 65.30 21 82.64 24.32 10.70 28.30 38.90 65.60 23 80.80 22.75
32 HCQ_LSMDC_bs32.json HCQ_LSMDC_bs32.txt 12.30 30.00 38.70 66.30 20 79.95 24.26 12.10 28.70 39.10 63.50 23 80.79 23.86
64 HCQ_LSMDC_bs64.json HCQ_LSMDC_bs64.txt 13.40 31.90 41.00 66.20 17 75.98 25.98 13.40 31.50 40.00 66.20 20 73.14 25.65
128 (default) HCQ_LSMDC.json HCQ_LSMDC.txt 14.50 33.60 43.10 68.20 18.5 75.95 27.59 13.70 33.20 42.80 66.10 17 74.28 26.90
256 HCQ_LSMDC_bs256.json HCQ_LSMDC_bs256.txt 14.30 34.80 43.60 69.30 16 74.04 27.89 14.30 33.50 42.50 67.70 16 71.84 27.31
ActivityNet Captions 16 HCQ_ActivityNet_bs16.json HCQ_ActivityNet_bs16.txt 21.31 52.55 70.59 92.19 5 27.31 42.92 22.25 53.18 70.41 92.33 5 26.57 43.68
32 (default) HCQ_ActivityNet.json HCQ_ActivityNet.txt 22.19 53.69 70.12 91.21 5 30.71 43.72 23.00 54.85 70.14 91.38 5 29.08 44.56
64 HCQ_ActivityNet_bs64.json HCQ_ActivityNet_bs64.txt 20.62 51.60 66.91 88.94 5 33.61 41.45 20.58 51.64 67.76 89.40 5 31.52 41.61
128 HCQ_ActivityNet_bs128.json HCQ_ActivityNet_bs128.txt 19.36 48.61 64.86 88.41 6 35.38 39.37 19.22 49.68 66.04 89.12 6 33.15 39.80
τ: the temperature factor in contrastive learning loss (Eq.(13)) MSRVTT (1k-A) 0.03 HCQ_MSRVTT_1kA_t0.03.json HCQ_MSRVTT_1kA_t0.03.txt 24.90 56.50 68.80 88.80 4 26.95 45.91 25.10 53.90 69.10 89.70 4 24.91 45.39
0.05 HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt 25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
0..07 HCQ_MSRVTT_1kA_t0.07.json HCQ_MSRVTT_1kA_t0.07.txt 25.40 52.80 67.50 88.60 5 30.40 44.90 25.90 57.00 68.00 90.00 4 27.78 46.48
0.1 HCQ_MSRVTT_1kA_t0.1.json HCQ_MSRVTT_1kA_t0.1.txt 23.90 52.10 66.20 87.10 5 32.74 43.52 22.50 54.00 67.10 87.70 5 31.09 43.36
0.12 HCQ_MSRVTT_1kA_t0.12.json HCQ_MSRVTT_1kA_t0.12.txt 22.60 49.60 65.00 87.90 6 34.53 41.77 21.20 50.80 65.10 87.30 5 33.46 41.23
0.15 HCQ_MSRVTT_1kA_t0.15.json HCQ_MSRVTT_1kA_t0.15.txt 18.20 44.50 60.20 86.80 7 36.74 36.53 16.50 46.80 61.40 85.80 6 35.20 36.19
MSRVTT (1k-B) 0.03 HCQ_MSRVTT_1kB_t0.03.json HCQ_MSRVTT_1kB_t0.03.txt 23.10 51.90 63.40 88.20 5 30.89 42.36 22.90 51.70 65.60 88.10 5 25.72 42.67
0.05 HCQ_MSRVTT_1kB.json HCQ_MSRVTT_1kB.txt 22.50 51.50 65.90 86.10 5 33.65 42.43 23.70 52.20 66.90 88.10 5 29.30 43.58
0..07 HCQ_MSRVTT_1kB_t0.07.json HCQ_MSRVTT_1kB_t0.07.txt 23.90 49.90 63.50 86.70 6 34.78 42.31 22.70 52.10 65.30 87.40 5 32.91 42.59
0.1 HCQ_MSRVTT_1kB_t0.1.json HCQ_MSRVTT_1kB_t0.1.txt 19.90 50.70 63.80 86.80 5 35.51 40.08 19.90 50.70 65.00 87.20 5 34.81 40.33
0.12 HCQ_MSRVTT_1kB_t0.12.json HCQ_MSRVTT_1kB_t0.12.txt 19.00 46.30 61.00 86.40 7 35.89 37.72 18.30 48.20 61.30 86.60 6 35.56 37.81
0.15 HCQ_MSRVTT_1kB_t0.15.json HCQ_MSRVTT_1kB_t0.15.txt 15.60 43.20 56.70 84.50 8 40.02 33.68 14.70 44.20 57.90 85.80 7 39.38 33.51
MSRVTT (Full) 0.03 HCQ_MSRVTT_full_t0.03.json HCQ_MSRVTT_full_t0.03.txt 14.11 38.29 50.77 80.00 10 45.90 30.16 16.32 45.45 59.80 86.86 7 31.64 35.40
0.05 HCQ_MSRVTT_full.json HCQ_MSRVTT_full.txt 15.15 38.53 51.00 81.34 10 46.22 30.99 18.26 44.88 59.06 87.16 7 30.96 36.45
0..07 HCQ_MSRVTT_full_t0.07.json HCQ_MSRVTT_full_t0.07.txt 14.15 37.89 51.17 81.30 10 46.22 30.16 16.72 43.18 58.09 85.95 8 33.70 34.75
0.1 HCQ_MSRVTT_full_t0.1.json HCQ_MSRVTT_full_t0.1.txt 13.58 36.56 49.06 80.43 11 49.80 28.99 14.35 39.13 53.65 84.15 9 39.70 31.11
0.12 HCQ_MSRVTT_full_t0.12.json HCQ_MSRVTT_full_t0.12.txt 12.31 34.25 49.13 79.50 11 50.45 27.46 12.24 35.65 50.64 82.98 10 44.35 28.06
0.15 HCQ_MSRVTT_full_t0.15.json HCQ_MSRVTT_full_t0.15.txt 10.10 30.64 43.88 76.79 14 55.40 23.86 9.16 29.90 45.69 79.00 13 53.01 23.22
LSMDC 0.03 HCQ_LSMDC_t0.03.json HCQ_LSMDC_t0.03.txt 14.90 32.00 42.50 66.20 18 76.14 27.26 12.90 31.80 40.80 66.80 20 72.31 25.58
0.05 HCQ_LSMDC.json HCQ_LSMDC.txt 14.50 33.60 43.10 68.20 18.5 75.95 27.59 13.70 33.20 42.80 66.10 17 74.28 26.90
0..07 HCQ_LSMDC_t0.07.json HCQ_LSMDC_t0.07.txt 12.80 32.30 43.40 67.70 17 75.92 26.18 12.80 32.70 42.90 67.30 17 76.30 26.19
0.1 HCQ_LSMDC_t0.1.json HCQ_LSMDC_t0.1.txt 12.50 30.10 40.80 66.90 18 81.02 24.85 11.80 29.00 40.30 64.20 19 82.29 23.98
0.12 HCQ_LSMDC_t0.12.json HCQ_LSMDC_t0.12.txt 12.00 28.10 38.80 66.40 20 81.93 23.56 11.90 27.60 39.60 64.80 20 84.15 23.52
0.15 HCQ_LSMDC_t0.15.json HCQ_LSMDC_t0.15.txt 10.70 26.10 36.00 64.90 23 82.81 21.58 9.10 24.00 35.10 62.80 25 88.27 19.72
ActivityNet Captions 0.03 HCQ_ActivityNet_t0.03.json HCQ_ActivityNet_t0.03.txt 22.15 52.78 68.58 91.38 5 26.42 43.12 21.74 52.47 68.70 91.38 5 26.65 42.79
0.05 HCQ_ActivityNet.json HCQ_ActivityNet.txt 21.96 53.30 68.99 90.89 5 29.67 43.23 21.94 52.94 69.21 90.69 5 29.12 43.16
0..07 HCQ_ActivityNet_t0.07.json HCQ_ActivityNet_t0.07.txt 22.19 53.69 70.12 91.21 5 30.71 43.72 23.00 54.85 70.14 91.38 5 29.08 44.56
0.1 HCQ_ActivityNet_t0.1.json HCQ_ActivityNet_t0.1.txt 22.11 52.08 68.23 91.34 5 28.34 42.83 21.72 53.33 69.60 91.60 5 27.19 43.20
0.12 HCQ_ActivityNet_t0.12.json HCQ_ActivityNet_t0.12.txt 19.20 50.52 67.99 91.95 5 30.12 40.40 20.09 51.66 68.23 91.89 5 29.16 41.37
0.15 HCQ_ActivityNet_t0.15.json HCQ_ActivityNet_t0.15.txt 17.00 47.14 65.49 91.42 6 31.43 37.44 18.59 48.81 65.30 91.84 6 32.65 38.99

3.1.4 Results of HCQ with different kinds of text encoders ("1k-A" split) (reported in Table 5 in our paper)

Model Text Encoder Config json Log Text-to-Video Retrieval Video-to-Text Retrieval
[email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10} [email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10}
HCQ bert-base (default) HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt 25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
BERT-large HCQ_MSRVTT_1kA_bert-large.json HCQ_MSRVTT_1kA_bert-large.txt 27.40 57.70 70.70 89.60 4 27.09 48.17 26.20 59.00 71.80 89.50 4 25.47 48.06
DistilBERT-base HCQ_MSRVTT_1kA_distilbert-base.json HCQ_MSRVTT_1kA_distilbert-base.txt 25.40 54.20 67.30 89.80 4 27.00 45.25 26.30 56.40 69.00 90.10 4 24.22 46.78
RoBERTa-base HCQ_MSRVTT_1kA_roberta-base.json HCQ_MSRVTT_1kA_roberta-base.txt 25.50 54.70 67.80 89.20 5 27.04 45.56 24.50 55.00 69.00 90.20 4 23.80 45.30
RoBERTa-large HCQ_MSRVTT_1kA_roberta-large.json HCQ_MSRVTT_1kA_roberta-large.txt 28.00 55.40 68.50 88.10 4 30.67 47.36 27.00 59.00 68.40 88.50 4 27.41 47.76
XLNet-base HCQ_MSRVTT_1kA_xlnet-base.json HCQ_MSRVTT_1kA_xlnet-base.txt 25.80 56.20 68.70 87.50 5 28.35 46.36 24.60 55.50 69.00 88.40 4 25.59 45.50
XLNet-large HCQ_MSRVTT_1kA_xlnet-large.json HCQ_MSRVTT_1kA_xlnet-large.txt 25.00 53.00 66.60 88.20 5 27.59 44.52 25.30 54.50 68.00 89.10 4 23.69 45.43

If you are doing experiments on a platform with enough RAM and want to accelerate the training, you can load the whole dataset in RAM by the following modification:

# WWW22-HCQ/base/base_dataset.py:L170
               load_in_ram=True, # change from 'False' to 'True'

3.2 Evaluation from checkpoint

We can evaluate the model from the checkpoint without re-training. The evaluation command:

python -m train --config configs/HCQ_MSRVTT_1kA.json --only_eval --load_checkpoint HCQ_MSRVTT_1kA.pth

We provide the checkpoint of HCQ_MSRVTT_1kA.json as an example, you can download this file (~1.6G) from the Google Drive and put it in the working directory (WWW22-HCQ/).

3.3 Evaluation for post-compression methods

Take the evaluation on MSRVTT dataset ("1k-A" split) as an example. First, we need to train an HCT.

# working directory: WWW22-HCQ/
python -m train --config configs/HCT_MSRVTT_1kA.json

Then, run the get_embed.py and pass the path of the HCT checkpoint to the script:

python -m get_embed configs/HCT_MSRVTT_1kA.json --only_eval --load_checkpoint HCT_MSRVTT_1kA/trained_model.pth

After that, we will get the embedding file embeddings.h5 under WWW22-HCQ/exps/HCT_MSRVTT_1kA/. Run the compress_embed.py and get the results:

# compress embeddings with LSH
python -m compress_embed --path ./exps/HCT_MSRVTT_1kA/embeddings.h5 --type LSH
# compress embeddings with PQ
python -m compress_embed --path ./exps/HCT_MSRVTT_1kA/embeddings.h5 --type PQ
# compress embeddings with OPQ
python -m compress_embed --path ./exps/HCT_MSRVTT_1kA/embeddings.h5 --type OPQ

3. References

If you find this code useful or use the toolkit in your work, please consider citing:

@inproceedings{wang22hcq,
  author={Wang, Jinpeng and Chen, Bin and Liao, Dongliang and Zeng, Ziyun and Li, Gongfu and Shu-Tao, Xia and Xu, Jin},
  title={Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval},
  booktitle={Proceedings of the Web Conference 2022},
  doi={10.1145/3485447.3512022}
}

4. Acknowledgements

Our code is based on the implementation of nanopq, Multi-Modal Transformer, Collaborative Experts, Transformers and Mixture of Embedding Experts.

5. Contact

If you have any question, you can raise an issue or email Jinpeng Wang ([email protected]). We will reply you soon.

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Bo Sun 132 Nov 28, 2022
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources

Audio Source Separation is the process of separating a mixture into isolated sounds from individual sources (e.g. just the lead vocals).

Victor Basu 14 Nov 07, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
Point cloud processing tool library.

Point Cloud ToolBox This point cloud processing tool library can be used to process point clouds, 3d meshes, and voxels. Environment python 3.7.5 Dep

ZhangXinyun 40 Dec 09, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
Implementation of parameterized soft-exponential activation function.

Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are

Shuvrajeet Das 1 Feb 23, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022