a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

Overview

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

1. Notes

This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" [https://arxiv.org/abs/2107.08430]
The repo is still under development

2. Environment

pytorch>=1.7.0, python>=3.6, Ubuntu/Windows, see more in 'requirements.txt'

cd /path/to/your/work
git clone https://github.com/zhangming8/yolox-pytorch.git
cd yolox-pytorch
download pre-train weights in Model Zoo to /path/to/your/work/weights

3. Object Detection

Model Zoo

All weights can be downloaded from GoogleDrive or BaiduDrive (code:bc72)

Model test size mAPval
0.5:0.95
mAPtest
0.5:0.95
Params
(M)
yolox-nano 416 25.4 25.7 0.91
yolox-tiny 416 33.1 33.2 5.06
yolox-s 640 39.3 39.6 9.0
yolox-m 640 46.2 46.4 25.3
yolox-l 640 49.5 50.0 54.2
yolox-x 640 50.5 51.1 99.1
yolox-x 800 51.2 51.9 99.1

mAP was reevaluated on COCO val2017 and test2017, and some results are slightly better than the official implement YOLOX. You can reproduce them by scripts in 'evaluate.sh'

Dataset

download COCO:
http://images.cocodataset.org/zips/train2017.zip
http://images.cocodataset.org/zips/val2017.zip
http://images.cocodataset.org/annotations/annotations_trainval2017.zip

unzip and put COCO dataset in following folders:
/path/to/dataset/annotations/instances_train2017.json
/path/to/dataset/annotations/instances_val2017.json
/path/to/dataset/images/train2017/*.jpg
/path/to/dataset/images/val2017/*.jpg

change opt.dataset_path = "/path/to/dataset" in 'config.py'

Train

See more example in 'train.sh'
a. Train from scratch:(backbone="CSPDarknet-s" means using yolox-s, and you can change it, eg: CSPDarknet-nano, tiny, s, m, l, x)
python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=True val_intervals=2 data_num_workers=6 batch_size=48

b. Finetune, download pre-trained weight on COCO and finetune on customer dataset:
python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=True val_intervals=2 data_num_workers=6 batch_size=48 load_model="../weights/yolox-s.pth"

c. Resume, you can use 'resume=True' when your training is accidentally stopped:
python train.py gpus='0' backbone="CSPDarknet-s" num_epochs=300 exp_id="coco_CSPDarknet-s_640x640" use_amp=True val_intervals=2 data_num_workers=6 batch_size=48 load_model="exp/coco_CSPDarknet-s_640x640/model_last.pth" resume=True

Some Tips:

a. You can also change params in 'train.sh'(these params will replace opt.xxx in config.py) and use 'nohup sh train.sh &' to train
b. Multi-gpu train: set opt.gpus = "3,5,6,7" in 'config.py' or set gpus="3,5,6,7" in 'train.sh'
c. If you want to close multi-size training, change opt.random_size = None in 'config.py' or set random_size=None in 'train.sh'
d. random_size = (14, 26) means: Randomly select an integer from interval (14,26) and multiply by 32 as the input size
e. Visualized log by tensorboard: 
    tensorboard --logdir exp/your_exp_id/logs_2021-08-xx-xx-xx and visit http://localhost:6006
   Your can also use the following shell scripts:
    (1) grep 'train epoch' exp/your_exp_id/logs_2021-08-xx-xx-xx/log.txt
    (2) grep 'val epoch' exp/your_exp_id/logs_2021-08-xx-xx-xx/log.txt

Evaluate

Module weights will be saved in './exp/your_exp_id/model_xx.pth'
change 'load_model'='weight/path/to/evaluate.pth' and backbone='backbone-type' in 'evaluate.sh'
sh evaluate.sh

Predict/Inference/Demo

a. Predict images, change img_dir and load_model
python predict.py gpus='0' backbone="CSPDarknet-s" vis_thresh=0.3 load_model="exp/coco_CSPDarknet-s_640x640/model_best.pth" img_dir='/path/to/dataset/images/val2017'

b. Predict video
python predict.py gpus='0' backbone="CSPDarknet-s" vis_thresh=0.3 load_model="exp/coco_CSPDarknet-s_640x640/model_best.pth" video_dir='/path/to/your/video.mp4'

You can also change params in 'predict.sh', and use 'sh predict.sh'

Train Customer Dataset(VOC format)

1. put your annotations(.xml) and images(.jpg) into:
    /path/to/voc_data/images/train2017/*.jpg  # train images
    /path/to/voc_data/images/train2017/*.xml  # train xml annotations
    /path/to/voc_data/images/val2017/*.jpg  # val images
    /path/to/voc_data/images/val2017/*.xml  # val xml annotations

2. change opt.label_name = ['your', 'dataset', 'label'] in 'config.py'
   change opt.dataset_path = '/path/to/voc_data' in 'config.py'

3. python tools/voc_to_coco.py
   Converted COCO format annotation will be saved into:
    /path/to/voc_data/annotations/instances_train2017.json
    /path/to/voc_data/annotations/instances_val2017.json

4. (Optional) you can visualize the converted annotations by:
    python tools/show_coco_anns.py
    Here is an analysis of the COCO annotation https://blog.csdn.net/u010397980/article/details/90341223?spm=1001.2014.3001.5501

5. run train.sh, evaluate.sh, predict.sh (are the same as COCO)

4. Multi/One-class Multi-object Tracking(MOT)

one-class/single-class MOT Dataset

DOING

Multi-class MOT Dataset

DOING

Train

DOING

Evaluate

DOING

Predict/Inference/Demo

DOING

5. Acknowledgement

https://github.com/Megvii-BaseDetection/YOLOX
https://github.com/PaddlePaddle/PaddleDetection
https://github.com/open-mmlab/mmdetection
https://github.com/xingyizhou/CenterNet
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
[ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing

NeRFlow [ICCV'21] Neural Radiance Flow for 4D View Synthesis and Video Processing Datasets The pouring dataset used for experiments can be download he

44 Dec 20, 2022
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Guiding evolutionary strategies by (inaccurate) differentiable robot simulators @ NeurIPS, 4th Robot Learning Workshop

Guiding Evolutionary Strategies by Differentiable Robot Simulators In recent years, Evolutionary Strategies were actively explored in robotic tasks fo

Vladislav Kurenkov 4 Dec 14, 2021
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023