Learning Confidence for Out-of-Distribution Detection in Neural Networks

Overview

Learning Confidence Estimates for Neural Networks

This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detection in Neural Networks. In this work, we demonstrate how to augment neural networks with a confidence estimation branch, which can be used to identify misclassified and out-of-distribution examples.

To learn confidence estimates during training, we provide the neural network with "hints" towards the correct output whenever it exhibits low confidence in its predictions. Hints are provided by pushing the prediction closer to the target distribution via interpolation, where the amount of interpolation proportional to the network's confidence that its prediction is correct. To discourage the network from always asking for free hints, a small penalty is applied whenever it is not confident. As a result, the network learns to only produce low confidence estimates when it is likely to make an incorrect prediction.

Bibtex:

@article{devries2018learning,
  title={Learning Confidence for Out-of-Distribution Detection in Neural Networks},
  author={DeVries, Terrance and Taylor, Graham W},
  journal={arXiv preprint arXiv:1802.04865},
  year={2018}
}

Results and Usage

We evalute our method on the task of out-of-distribution detection using three different neural network architectures: DenseNet, WideResNet, and VGG. CIFAR-10 and SVHN are used as the in-distribution datasets, while TinyImageNet, LSUN, iSUN, uniform noise, and Gaussian noise are used as the out-of-distribution datasets. Definitions of evaluation metrics can be found in the paper.

Dependencies

PyTorch v0.3.0
tqdm
visdom
seaborn
Pillow
scikit-learn

Training

Train a model with a confidence estimator with train.py. During training you can use visdom to see a histogram of confidence estimates from the test set. Training logs will be stored in the logs/ folder, while checkpoints are stored in the checkpoints/ folder.

Args Options Description
dataset cifar10,
svhn
Selects which dataset to train on.
model densenet,
wideresnet,
vgg13
Selects which model architecture to use.
batch_size [int] Number of samples per batch.
epochs [int] Number of epochs for training.
seed [int] Random seed.
learning_rate [float] Learning rate.
data_augmentation Train with standard data augmentation (random flipping and translation).
cutout [int] Indicates the patch size to use for Cutout. If 0, Cutout is not used.
budget [float] Controls how often the network can choose have low confidence in its prediction. Increasing the budget will bias the output towards low confidence predictions, while decreasing the budget will produce more high confidence predictions.
baseline Train the model without the confidence branch.

Use the following settings to replicate the experiments from the paper:

VGG13 on CIFAR-10

python train.py --dataset cifar10 --model vgg13 --budget 0.3 --data_augmentation --cutout 16

WideResNet on CIFAR-10

python train.py --dataset cifar10 --model wideresnet --budget 0.3 --data_augmentation --cutout 16

DenseNet on CIFAR-10

python train.py --dataset cifar10 --model densenet --budget 0.3 --epochs 300 --batch_size 64 --data_augmentation --cutout 16

VGG13 on SVHN

python train.py --dataset svhn --model vgg13 --budget 0.3 --learning_rate 0.01 --epochs 160 --data_augmentation --cutout 20

WideResNet on SVHN

python train.py --dataset svhn --model wideresnet --budget 0.3 --learning_rate 0.01 --epochs 160 --data_augmentation --cutout 20

DenseNet on SVHN

python train.py --dataset svhn --model densenet --budget 0.3 --learning_rate 0.01 --epochs 300 --batch_size 64  --data_augmentation --cutout 20

Out-of-distribution detection

Evaluate a trained model with out_of_distribution_detection.py. Before running this you will need to download the out-of-distribution datasets from Shiyu Liang's ODIN github repo and modify the data paths in the file according to where you saved the datasets.

Args Options Description
ind_dataset cifar10,
svhn
Indicates which dataset to use as in-distribution. Should be the same one that the model was trained on.
ood_dataset tinyImageNet_crop,
tinyImageNet_resize,
LSUN_crop,
LSUN_resize,
iSUN,
Uniform,
Gaussian,
all
Indicates which dataset to use as the out-of-distribution datset.
model densenet,
wideresnet,
vgg13
Selects which model architecture to use. Should be the same one that the model was trained on.
process baseline,
ODIN,
confidence,
confidence_scaling
Indicates which method to use for out-of-distribution detection. Baseline uses the maximum softmax probability. ODIN applies temperature scaling and input pre-processing to the baseline method. Confidence uses the learned confidence estimates. Confidence scaling applies input pre-processing to the confidence estimates.
batch_size [int] Number of samples per batch.
T [float] Temperature to use for temperature scaling.
epsilon [float] Noise magnitude to use for input pre-processing.
checkpoint [str] Filename of trained model checkpoint. Assumes the file is in the checkpoints/ folder. A .pt extension is also automatically added to the filename.
validation Use this flag for fine-tuning T and epsilon. If flag is on, the script will only evaluate on the first 1000 samples in the out-of-distribution dataset. If flag is not used, the remaining samples are used for evaluation. Based on validation procedure from ODIN.

Example commands for running the out-of-distribution detection script:

Baseline

python out_of_distribution_detection.py --ind_dataset svhn --ood_dataset all --model vgg13 --process baseline --checkpoint svhn_vgg13_budget_0.0_seed_0

ODIN

python out_of_distribution_detection.py --ind_dataset cifar10 --ood_dataset tinyImageNet_resize --model densenet --process ODIN --T 1000 --epsilon 0.001 --checkpoint cifar10_densenet_budget_0.0_seed_0

Confidence

python out_of_distribution_detection.py --ind_dataset cifar10 --ood_dataset LSUN_crop --model vgg13 --process confidence --checkpoint cifar10_vgg13_budget_0.3_seed_0

Confidence scaling

python out_of_distribution_detection.py --ind_dataset svhn --ood_dataset iSUN --model wideresnet --process confidence_scaling --epsilon 0.001 --checkpoint svhn_wideresnet_budget_0.3_seed_0
The MLOps platform for innovators ๐Ÿš€

โ€‹ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters

CNN-Filter-DB An Empirical Investigation of Model-to-Model Distribution Shifts in Trained Convolutional Filters Paul Gavrikov, Janis Keuper Paper: htt

Paul Gavrikov 18 Dec 30, 2022
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
ใ€ŒPyTorch Implementation of AnimeGANv2ใ€ใ‚’็”จใ„ใฆใ€็”Ÿๆˆใ—ใŸ้ก”็”ปๅƒใ‚’ๅ…ƒใฎ็”ปๅƒใซไธŠๆ›ธใใ™ใ‚‹ใƒ‡ใƒข

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2ใ‚’็”จใ„ใฆใ€็”Ÿๆˆใ—ใŸ้ก”็”ปๅƒใ‚’ๅ…ƒใฎ็”ปๅƒใซไธŠๆ›ธใใ™ใ‚‹ใƒ‡ใƒขใงใ™ใ€‚

KazuhitoTakahashi 21 Oct 18, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
Submanifold sparse convolutional networks

Submanifold Sparse Convolutional Networks This is the PyTorch library for training Submanifold Sparse Convolutional Networks. Spatial sparsity This li

Facebook Research 1.8k Jan 06, 2023
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation.

DosGAN-PyTorch PyTorch Implementation of Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation

40 Nov 30, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022