MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

Related tags

Deep LearningMOpt-AFL
Overview

MOpt-AFL

1. Description

MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal selection probability distribution of operators with respect to fuzzing effectiveness. More details can be found in the technical report. The installation of MOpt-AFL is the same as AFL's.

2. Cite Information

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song and Raheem Beyah, MOPT: Optimized Mutation Scheduling for Fuzzers, USENIX Security 2019.

3. Seed Sets

We open source all the seed sets used in the paper "MOPT: Optimized Mutation Scheduling for Fuzzers".

4. Experiment Results

The experiment results can be found in https://drive.google.com/drive/folders/184GOzkZGls1H2NuLuUfSp9gfqp1E2-lL?usp=sharing. We only open source the crash files since the space is limited.

5. Technical Report

MOpt_TechReport.pdf is the technical report of the paper "MOPT: Optimized Mutation Scheduling for Fuzzers", which contains more deatails.

6. Parameter Introduction

Most important, you must add the parameter -L (e.g., -L 0) to launch the MOpt scheme.


-L controls the time to move on to the pacemaker fuzzing mode.
-L t: when MOpt-AFL finishes the mutation of one input, if it has not discovered any new unique crash or path for more than t min, MOpt-AFL will enter the pacemaker fuzzing mode.


Setting 0 will enter the pacemaker fuzzing mode at first, which is recommended in a short time-scale evaluation (like 2 hours).
For instance, it may take three or four days for MOpt-AFL to enter the pacemaker fuzzing mode when -L 30.

Hey guys, I realize that most experiments may last no longer than 24 hours. You may have trouble selecting a suitable value of 'L' without testing. So I modify the code in order to employ '-L 1' as the default setting. This means you do not have to add the parameter 'L' to launch the MOpt scheme. If you wish, provide a parameter '-L t' in the cmd can adjust the time when MOpt will enter the pacemaker fuzzing mode as aforementioned. Whether MOpt enters the pacemaker fuzzing mode has a great influence on the fuzzing performance in some cases as shown in our paper.
'-L 1' may not be the best choice but will be acceptable in most cases. I may provide several experiment results to show this situation.

The unique paths found by different fuzzing settings in 24 hours.
Fuzzing setting infotocap @@ -o /dev/null objdump -S @@ sqlite3
MOpt -L 0 3629 5106 10498
MOpt -L 1 3983 5499 9975
MOpt -L 5 3772 2512 9332
MOpt -L 10 4062 4741 9465
MOpt -L 30 3162 1991 6337
AFL 1821 1099 4949

Other important parameters can be found in afl-fuzz.c, for instance,
swarm_num: the number of the PSO swarms used in the fuzzing process.
period_pilot: how many times MOpt-AFL will execute the target program in the pilot fuzzing module, then it will enter the core fuzzing module.
period_core: how many times MOpt-AFL will execute the target program in the core fuzzing module, then it will enter the PSO updating module.
limit_time_bound: control how many interesting test cases need to be found before MOpt-AFL quits the pacemaker fuzzing mode and reuses the deterministic stage. 0 < limit_time_bound < 1, MOpt-AFL-tmp. limit_time_bound >= 1, MOpt-AFL-ever.

Having fun with MOpt-AFL.

Citation:

@inproceedings {236282,
author = {Chenyang Lyu and Shouling Ji and Chao Zhang and Yuwei Li and Wei-Han Lee and Yu Song and Raheem Beyah},
title = {{MOPT}: Optimized Mutation Scheduling for Fuzzers},
booktitle = {28th {USENIX} Security Symposium ({USENIX} Security 19)},
year = {2019},
isbn = {978-1-939133-06-9},
address = {Santa Clara, CA},
pages = {1949--1966},
url = {https://www.usenix.org/conference/usenixsecurity19/presentation/lyu},
publisher = {{USENIX} Association},
month = aug,
}
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022
Deep Distributed Control of Port-Hamiltonian Systems

De(e)pendable Distributed Control of Port-Hamiltonian Systems (DeepDisCoPH) This repository is associated to the paper [1] and it contains: The full p

Dependable Control and Decision group - EPFL 3 Aug 17, 2022
Deep Learning Head Pose Estimation using PyTorch.

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance.

Nataniel Ruiz 1.3k Dec 26, 2022
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022