Unified tracking framework with a single appearance model

Related tags

Deep LearningUniTrack
Overview

UniTrack Logo


Paper: Do different tracking tasks require different appearance model?

[ArXiv] (comming soon) [Project Page] (comming soon)

UniTrack is a simple and Unified framework for versatile visual Tracking tasks.

As an important problem in computer vision, tracking has been fragmented into a multitude of different experimental setups. As a consequence, the literature has fragmented too, and now the novel approaches proposed by the community are usually specialized to fit only one specific setup. To understand to what extend this specialization is actually necessary, we present UniTrack, a solution to address multiple different tracking tasks within the same framework. All tasks share the same universal appearance model. UniTrack enjoys the following advantages,

Tasks & Framework

tasksframework

Tasks

We classify existing tracking tasks along four axes: (1) Single or multiple targets; (2) Users specify targets or automatic detectors specify targets; (3) Observation formats (bounding box/mask/pose); (2) Class-agnostic or class-specific (i.e. human/vehicles). We mainly expriment on 5 tasks: SOT, VOS, MOT, MOTS, and PoseTrack. Task setups are summarized in the above figure.

Appearance model

An appearance model is the only learnable component in UniTrack. It should provide universal visual representation, and is usually pre-trained on large-scale dataset in supervised or unsupervised manners. Typical examples include ImageNet pre-trained ResNets (supervised), and recent self-supervised models such as MoCo and SimCLR (unsupervised).

Propagation and Association

Two fundamental algorithm building blocks in UniTrack. Both employ features extracted by the appearance model as input. For propagation we adopt exiting methods such as cross correlation, DCF, and mask propation. For association we employ a simple algorithm and develop a novel similarity metric to make full use of the appearance model.

Results

Below we show results of UniTrack with a simple ImageNet Pre-trained ResNet-18 as the appearance model. More results (other tasks/datasets, more visualization) can be found in results.md.

Qualitative results

Single Object Tracking (SOT) on OTB-2015

Video Object Segmentation (VOS) on DAVIS-2017 val split

Multiple Object Tracking (MOT) on MOT-16 test set private detector track (Detections from FairMOT)

Multiple Object Tracking and Segmentation (MOTS) on MOTS challenge test set (Detections from COSTA_st)

Pose Tracking on PoseTrack-2018 val split (Detections from LightTrack)

Quantitative results

Single Object Tracking (SOT) on OTB-2015

Method SiamFC SiamRPN SiamRPN++ UDT* UDT+* LUDT* LUDT+* UniTrack_XCorr* UniTrack_DCF*
AUC 58.2 63.7 69.6 59.4 63.2 60.2 63.9 55.5 61.8

* indicates non-supervised methods

Video Object Segmentation (VOS) on DAVIS-2017 val split

Method SiamMask FeelVOS STM Colorization* TimeCycle* UVC* CRW* VFS* UniTrack*
J-mean 54.3 63.7 79.2 34.6 40.1 56.7 64.8 66.5 58.4

* indicates non-supervised methods

Multiple Object Tracking (MOT) on MOT-16 test set private detector track

Method POI DeepSORT-2 JDE CTrack TubeTK TraDes CSTrack FairMOT* UniTrack*
IDF-1 65.1 62.2 55.8 57.2 62.2 64.7 71.8 72.8 71.8
IDs 805 781 1544 1897 1236 1144 1071 1074 683
MOTA 66.1 61.4 64.4 67.6 66.9 70.1 70.7 74.9 74.7

* indicates methods using the same detections

Multiple Object Tracking and Segmentation (MOTS) on MOTS challenge test set

Method TrackRCNN SORTS PointTrack GMPHD COSTA_st* UniTrack*
IDF-1 42.7 57.3 42.9 65.6 70.3 67.2
IDs 567 577 868 566 421 622
sMOTA 40.6 55.0 62.3 69.0 70.2 68.9

* indicates methods using the same detections

Pose Tracking on PoseTrack-2018 val split

Method MDPN OpenSVAI Miracle KeyTrack LightTrack* UniTrack*
IDF-1 - - - - 52.2 73.2
IDs - - - - 3024 6760
sMOTA 50.6 62.4 64.0 66.6 64.8 63.5

* indicates methods using the same detections

Getting started

Demo

Update log

[2021.6.24]: Start writing docs, please stay tuned!

Acknowledgement

VideoWalk by Allan A. Jabri

SOT code by Zhipeng Zhang

Owner
ZhongdaoWang
Computer Vision, Multi-Object Tracking
ZhongdaoWang
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022
QA-GNN: Question Answering using Language Models and Knowledge Graphs

QA-GNN: Question Answering using Language Models and Knowledge Graphs This repo provides the source code & data of our paper: QA-GNN: Reasoning with L

Michihiro Yasunaga 434 Jan 04, 2023
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

wenzhu 83 Dec 24, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

SimGNN ⠀⠀⠀ A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019). Abstract Graph similarity s

Benedek Rozemberczki 534 Dec 25, 2022
Optimising chemical reactions using machine learning

Summit Summit is a set of tools for optimising chemical processes. We’ve started by targeting reactions. What is Summit? Currently, reaction optimisat

Sustainable Reaction Engineering Group 75 Dec 14, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022