High-fidelity 3D Model Compression based on Key Spheres

Overview

High-fidelity 3D Model Compression based on Key Spheres

This repository contains the implementation of the paper:

Yuanzhan Li, Yuqi Liu, Yujie Lu, Siyu Zhang, Shen Cai∗, and Yanting Zhang. High-fidelity 3D Model Compression based on Key Spheres. Accepted by Data Compression Conference (DCC) 2022 as a full paper. Paper pdf

Methodology

Training a specific network for each 3D model to predict the signed distance function (SDF), which individually embeds its shape, can realize compressed representation and reconstruction of objects by storing fewer network (and possibly latent) parameters. However, it is difficult for the state-of-the-art methods NI [1] and NGLOD [2] to properly reconstruct complex objects with fewer network parameters. The methodology we adopt is to utilize explicit key spheres [3] as network input to reduce the difficulty of fitting global and local shapes. By inputting the spatial information ofmultiple spheres which imply rough shapes (SDF) of an object, the proposed method can significantly improve the reconstruction accuracy with a negligible storage cost.An example is shown in Fig. 1. Compared to the previous works, our method achieves the high-fidelity and high-compression coding and reconstruction for most of 3D objects in the test dataset. image

As key spheres imply the rough shape and can impose constraints on local SDF values, the fitting difficulty of network is significantly reduced. Fig. 2 shows fitting SDF comparison of three methods to a 2D bunny image. image

[1] Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson, “On the effectiveness ofweight-encoded neural implicit 3d shapes,” arXiv:2009.09808, 2020.

[2] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler, “Neural geometric level of detail: real-time rendering with implicit 3d shapes,” in CVPR, 2021.

[3] Siyu Zhang, Hui Cao, Yuqi Liu, Shen Cai, Yanting Zhang, Yuanzhan Li, and Xiaoyu Chi, “SN-Graph: a minimalist 3d object representation for classification,” in ICME, 2021.

[4] M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo, and E. Puppo, “Practical quad mesh simplification,” CGF, 29(2), 407–418, 2010.

Network

In order to make a fair comparison with NI and NGLOD respectively, this 29D point feature can be extracted in direct and latent ways based on key spheres. The direct point feature extraction (DPFE, see the upper branch of Fig. 3) only uses a single-layer MLP (4∗29) to upgrade the 4D input of each key sphere to a 29D feature. The latent point feature extraction (LPFE, see the lower branch in Fig. 3) is similar to the latent feature of grid points in NGLOD. The 29D sphere feature vector is obtained by training, which is stored in advance. image

Experiment

image image

Results

For a mesh model, we provide the corresponding network model using DPLE branch. These models are trained with a 6∗32 MLP and 128 key spheres as input by default. The network model files are placed at ./results/models/, and their naming rules are a_b_c_d.pth, where a is the number of key spheres, b and c are the number and size of MLP layers, and d is the data name. If b and c are omitted, 6∗32 MLP is used.

Some reconstructed mesh models are also provided. They are reconstructed using the 128-resolution marching cube algorithm. You can find them in ./results/meshes/. Three models are shown below. More reconstructed results in Thingi32 dataset can be seen in Release files. image image image

Dataset

We use ShapeNet and Thingi10k datasets, both of which are available from their official website. Thingi32 is composed of 32 simple shapes in Thingi10K. ShapeNet150 contains 150 shapes in the ShapeNet dataset.

ShapeNet

You can download them at https://shapenet.org/download/shapenetcore

Thingi10k

You can download them at https://ten-thousand-models.appspot.com/

Thingi32 and ShapeNet150

You can check their name at https://github.com/nv-tlabs/nglod/issues/4

Getting started

Ubuntu and CUDA version

We verified that it worked on ubuntu18.04 cuda10.2

Python dependencies

The easiest way to get started is to create a virtual Python 3.6 environment via our environment.yml:

conda env create -f environment.yml
conda activate torch_over
cd ./submodules/miniball
python setup.py install

Training

python train_series.py

Evaluation

python eval.py

If you want to generate a reconstructed mesh through the MC algorithm

python modelmesher.py 

Explanation

  1. NeuralImplicit.py corresponds to the first architecture in the paper, NeuralImplicit_1.py corresponds to the second architecture.
  2. We provide sphere files for thingi10k objects at ./sphere/thingi10kSphere/.
  3. If you want to generate key spheres for your own models, check out https://github.com/cscvlab/SN-Graph

Third-Party Libraries

This code includes code derived from 3 third-party libraries

https://github.com/nv-tlabs/nglod https://github.com/u2ni/ICML2021

License

This project is licensed under the terms of the MIT license (see LICENSE for details).

You might also like...
A two-stage U-Net for high-fidelity denoising of historical recordings
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

 SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

MMRazor: a model compression toolkit for model slimming and AutoML
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

 From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning approach for low-light image enhancement.

 UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

Releases(thing32)
Official MegEngine implementation of CREStereo(CVPR 2022 Oral).

[CVPR 2022] Practical Stereo Matching via Cascaded Recurrent Network with Adaptive Correlation This repository contains MegEngine implementation of ou

MEGVII Research 309 Dec 30, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
How the Deep Q-learning method works and discuss the new ideas that makes the algorithm work

Deep Q-Learning Recommend papers The first step is to read and understand the method that you will implement. It was first introduced in a 2013 paper

1 Jan 25, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022