High-fidelity 3D Model Compression based on Key Spheres

Overview

High-fidelity 3D Model Compression based on Key Spheres

This repository contains the implementation of the paper:

Yuanzhan Li, Yuqi Liu, Yujie Lu, Siyu Zhang, Shen Cai∗, and Yanting Zhang. High-fidelity 3D Model Compression based on Key Spheres. Accepted by Data Compression Conference (DCC) 2022 as a full paper. Paper pdf

Methodology

Training a specific network for each 3D model to predict the signed distance function (SDF), which individually embeds its shape, can realize compressed representation and reconstruction of objects by storing fewer network (and possibly latent) parameters. However, it is difficult for the state-of-the-art methods NI [1] and NGLOD [2] to properly reconstruct complex objects with fewer network parameters. The methodology we adopt is to utilize explicit key spheres [3] as network input to reduce the difficulty of fitting global and local shapes. By inputting the spatial information ofmultiple spheres which imply rough shapes (SDF) of an object, the proposed method can significantly improve the reconstruction accuracy with a negligible storage cost.An example is shown in Fig. 1. Compared to the previous works, our method achieves the high-fidelity and high-compression coding and reconstruction for most of 3D objects in the test dataset. image

As key spheres imply the rough shape and can impose constraints on local SDF values, the fitting difficulty of network is significantly reduced. Fig. 2 shows fitting SDF comparison of three methods to a 2D bunny image. image

[1] Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson, “On the effectiveness ofweight-encoded neural implicit 3d shapes,” arXiv:2009.09808, 2020.

[2] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler, “Neural geometric level of detail: real-time rendering with implicit 3d shapes,” in CVPR, 2021.

[3] Siyu Zhang, Hui Cao, Yuqi Liu, Shen Cai, Yanting Zhang, Yuanzhan Li, and Xiaoyu Chi, “SN-Graph: a minimalist 3d object representation for classification,” in ICME, 2021.

[4] M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo, and E. Puppo, “Practical quad mesh simplification,” CGF, 29(2), 407–418, 2010.

Network

In order to make a fair comparison with NI and NGLOD respectively, this 29D point feature can be extracted in direct and latent ways based on key spheres. The direct point feature extraction (DPFE, see the upper branch of Fig. 3) only uses a single-layer MLP (4∗29) to upgrade the 4D input of each key sphere to a 29D feature. The latent point feature extraction (LPFE, see the lower branch in Fig. 3) is similar to the latent feature of grid points in NGLOD. The 29D sphere feature vector is obtained by training, which is stored in advance. image

Experiment

image image

Results

For a mesh model, we provide the corresponding network model using DPLE branch. These models are trained with a 6∗32 MLP and 128 key spheres as input by default. The network model files are placed at ./results/models/, and their naming rules are a_b_c_d.pth, where a is the number of key spheres, b and c are the number and size of MLP layers, and d is the data name. If b and c are omitted, 6∗32 MLP is used.

Some reconstructed mesh models are also provided. They are reconstructed using the 128-resolution marching cube algorithm. You can find them in ./results/meshes/. Three models are shown below. More reconstructed results in Thingi32 dataset can be seen in Release files. image image image

Dataset

We use ShapeNet and Thingi10k datasets, both of which are available from their official website. Thingi32 is composed of 32 simple shapes in Thingi10K. ShapeNet150 contains 150 shapes in the ShapeNet dataset.

ShapeNet

You can download them at https://shapenet.org/download/shapenetcore

Thingi10k

You can download them at https://ten-thousand-models.appspot.com/

Thingi32 and ShapeNet150

You can check their name at https://github.com/nv-tlabs/nglod/issues/4

Getting started

Ubuntu and CUDA version

We verified that it worked on ubuntu18.04 cuda10.2

Python dependencies

The easiest way to get started is to create a virtual Python 3.6 environment via our environment.yml:

conda env create -f environment.yml
conda activate torch_over
cd ./submodules/miniball
python setup.py install

Training

python train_series.py

Evaluation

python eval.py

If you want to generate a reconstructed mesh through the MC algorithm

python modelmesher.py 

Explanation

  1. NeuralImplicit.py corresponds to the first architecture in the paper, NeuralImplicit_1.py corresponds to the second architecture.
  2. We provide sphere files for thingi10k objects at ./sphere/thingi10kSphere/.
  3. If you want to generate key spheres for your own models, check out https://github.com/cscvlab/SN-Graph

Third-Party Libraries

This code includes code derived from 3 third-party libraries

https://github.com/nv-tlabs/nglod https://github.com/u2ni/ICML2021

License

This project is licensed under the terms of the MIT license (see LICENSE for details).

You might also like...
A two-stage U-Net for high-fidelity denoising of historical recordings
A two-stage U-Net for high-fidelity denoising of historical recordings

A two-stage U-Net for high-fidelity denoising of historical recordings Official repository of the paper (not submitted yet): E. Moliner and V. Välimäk

Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

 SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

MMRazor: a model compression toolkit for model slimming and AutoML
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

 From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning approach for low-light image enhancement.

 UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

Releases(thing32)
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus `Chen 2 Jun 09, 2022
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

4 Feb 03, 2022
Official codes: Self-Supervised Learning by Estimating Twin Class Distribution

TWIST: Self-Supervised Learning by Estimating Twin Class Distributions Codes and pretrained models for TWIST: @article{wang2021self, title={Self-Sup

Bytedance Inc. 85 Dec 15, 2022
Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch

Rewrite ultralytics/yolov5 v6.0 opencv inference code based on numpy, no need to rely on pytorch; pre-processing and post-processing using numpy instead of pytroch.

炼丹去了 21 Dec 12, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

100 Dec 18, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
A `Neural = Symbolic` framework for sound and complete weighted real-value logic

Logical Neural Networks LNNs are a novel Neuro = symbolic framework designed to seamlessly provide key properties of both neural nets (learning) and s

International Business Machines 138 Dec 19, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022