Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Overview

Swin-Transformer-Tensorflow

A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" to TensorFlow 2.

The official Pytorch implementation can be found here.

Introduction:

Swin Transformer Architecture Diagram

Swin Transformer (the name Swin stands for Shifted window) is initially described in arxiv, which capably serves as a general-purpose backbone for computer vision. It is basically a hierarchical Transformer whose representation is computed with shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection.

Swin Transformer achieves strong performance on COCO object detection (58.7 box AP and 51.1 mask AP on test-dev) and ADE20K semantic segmentation (53.5 mIoU on val), surpassing previous models by a large margin.

Usage:

1. To Run a Pre-trained Swin Transformer

Swin-T:

python main.py --cfg configs/swin_tiny_patch4_window7_224.yaml --include_top 1 --resume 1 --weights_type imagenet_1k

Swin-S:

python main.py --cfg configs/swin_small_patch4_window7_224.yaml --include_top 1 --resume 1 --weights_type imagenet_1k

Swin-B:

python main.py --cfg configs/swin_base_patch4_window7_224.yaml --include_top 1 --resume 1 --weights_type imagenet_1k

The possible options for cfg and weights_type are:

cfg weights_type 22K model 1K Model
configs/swin_tiny_patch4_window7_224.yaml imagenet_1k - github
configs/swin_small_patch4_window7_224.yaml imagenet_1k - github
configs/swin_base_patch4_window7_224.yaml imagenet_1k - github
configs/swin_base_patch4_window12_384.yaml imagenet_1k - github
configs/swin_base_patch4_window7_224.yaml imagenet_22kto1k - github
configs/swin_base_patch4_window12_384.yaml imagenet_22kto1k - github
configs/swin_large_patch4_window7_224.yaml imagenet_22kto1k - github
configs/swin_large_patch4_window12_384.yaml imagenet_22kto1k - github
configs/swin_base_patch4_window7_224.yaml imagenet_22k github -
configs/swin_base_patch4_window12_384.yaml imagenet_22k github -
configs/swin_large_patch4_window7_224.yaml imagenet_22k github -
configs/swin_large_patch4_window12_384.yaml imagenet_22k github -

2. Create custom models

To create a custom classification model:

import argparse

import tensorflow as tf

from config import get_config
from models.build import build_model

parser = argparse.ArgumentParser('Custom Swin Transformer')

parser.add_argument(
    '--cfg',
    type=str,
    metavar="FILE",
    help='path to config file',
    default="CUSTOM_YAML_FILE_PATH"
)
parser.add_argument(
    '--resume',
    type=int,
    help='Whether or not to resume training from pretrained weights',
    choices={0, 1},
    default=1,
)
parser.add_argument(
    '--weights_type',
    type=str,
    help='Type of pretrained weight file to load including number of classes',
    choices={"imagenet_1k", "imagenet_22k", "imagenet_22kto1k"},
    default="imagenet_1k",
)

args = parser.parse_args()
custom_config = get_config(args, include_top=False)

swin_transformer = tf.keras.Sequential([
    build_model(config=custom_config, load_pretrained=args.resume, weights_type=args.weights_type),
    tf.keras.layers.Dense(CUSTOM_NUM_CLASSES)
)

Model ouputs are logits, so don't forget to include softmax in training/inference!!

You can easily customize the model configs with custom YAML files. Predefined YAML files provided by Microsoft are located in the configs directory.

3. Convert PyTorch pretrained weights into Tensorflow checkpoints

We provide a python script with which we convert official PyTorch weights into Tensorflow checkpoints.

$ python convert_weights.py --cfg config_file --weights the_path_to_pytorch_weights --weights_type type_of_pretrained_weights --output the_path_to_output_tf_weights

TODO:

  • Translate model code over to TensorFlow
  • Load PyTorch pretrained weights into TensorFlow model
  • Write trainer code
  • Reproduce results presented in paper
    • Object Detection
  • Reproduce training efficiency of official code in TensorFlow

Citations:

@misc{liu2021swin,
      title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows}, 
      author={Ze Liu and Yutong Lin and Yue Cao and Han Hu and Yixuan Wei and Zheng Zhang and Stephen Lin and Baining Guo},
      year={2021},
      eprint={2103.14030},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
You might also like...
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

Non-Official Pytorch implementation of
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

https://arxiv.org/abs/2102.11005
https://arxiv.org/abs/2102.11005

LogME LogME: Practical Assessment of Pre-trained Models for Transfer Learning How to use Just feed the features f and labels y to the function, and yo

Comments
  • Custom Swin Transformer: error: unrecognized arguments

    Custom Swin Transformer: error: unrecognized arguments

    parser = argparse.ArgumentParser('Custom Swin Transformer')

    parser.add_argument( '--cfg', type=str, metavar="FILE", help='/content/Swin-Transformer-Tensorflow/configs/swin_tiny_patch4_window7_224.yaml', default="CUSTOM_YAML_FILE_PATH" ) parser.add_argument( '--resume', type=int, help=1, choices={0, 1}, default=1, ) parser.add_argument( '--weights_type', type=str, help='imagenet_22k', choices={"imagenet_1k", "imagenet_22k", "imagenet_22kto1k"}, default="imagenet_1k", )

    args = parser.parse_args() custom_config = get_config(args, include_top=False)

    i am trying to use it but it throws an error below

    usage: Custom Swin Transformer [-h] [--cfg FILE] [--resume {0,1}] [--weights_type {imagenet_22kto1k,imagenet_1k,imagenet_22k}] Custom Swin Transformer: error: unrecognized arguments: -f /root/.local/share/jupyter/runtime/kernel-ee309a98-1f20-4bb7-aa12-c2980aea076c.json An exception has occurred, use %tb to see the full traceback.

    SystemExit: 2

    opened by AliKayhanAtay 1
  • train dataset

    train dataset

    Thank you for Thank you for providing your code. I've been running the pretrained model, and I'd like to know how to learn about custom data from the code you provided and how to transfer learning to custom data using the pretrained model. Thank you.

    opened by hoyeoung 1
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
Autoregressive Predictive Coding: An unsupervised autoregressive model for speech representation learning

Autoregressive Predictive Coding This repository contains the official implementation (in PyTorch) of Autoregressive Predictive Coding (APC) proposed

iamyuanchung 173 Dec 18, 2022
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

ζ΅…ζ’¦ 828 Jan 04, 2023
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
JittorVis - Visual understanding of deep learning models

JittorVis: Visual understanding of deep learning model JittorVis is an open-source library for understanding the inner workings of Jittor models by vi

thu-vis 182 Jan 06, 2023
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
Genshin-assets - πŸ‘§ Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
OpenDILab Multi-Agent Environment

Go-Bigger: Multi-Agent Decision Intelligence Environment GoBigger Doc (δΈ­ζ–‡η‰ˆ) Ongoing 2021.11.13 We are holding a competition β€”β€” Go-Bigger: Multi-Agent

OpenDILab 441 Jan 05, 2023
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022