NeurIPS 2021 Datasets and Benchmarks Track

Related tags

Deep LearningAP-10K
Overview

AP-10K: A Benchmark for Animal Pose Estimation in the Wild

Introduction | Updates | Overview | Download | Training Code | Key Questions | License

Introduction

This repository is the official reporisity of AP-10K: A Benchmark for Animal Pose Estimation in the Wild (NeurIPS 2021 Datasets and Benchmarks Track). It contains the introduction, annotation files, and code for the dataset AP-10K, which is the first large-scale dataset for general animal pose estimation. AP-10K consists of 10,015 images collected and filtered from 23 animal families and 54 species, with high-quality keypoint annotations. We also contain another about 50k images with family and species labels. The dataset can be used for supervised learning, cross-domain transfer learning, and intra- and inter-family domain. It can also be used in self-supervised learning, semi-supervised learning, etc. The annotation files are provided following the COCO style.

Updates

01/11/2021 We have uploaded the corresponding code and pretrained models for the usage of AP-10K dataset!

01/11/2021 We have updated the dataset! It now has 54 species for training!

01/11/2021 The AP-10K dataset is integrated into mmpose! Please enjoy it!

11/10/2021 The paper is accepted to NeurIPS 2021 Datasets and Benchmarks Track!

31/08/2021 The paper is post on arxiv! We have uploaded the annotation file!

Overview

keypoint definition

Keypoint Description Keypoint Description
1 Left Eye 2 Right Eye
3 Nose 4 Neck
5 Root of Tail 6 Left Shoulder
7 Left Elbow 8 Left Front Paw
9 Right Shoulder 10 Right Elbow
11 Right Front Paw 12 Left Hip
13 Left Knee 14 Left Back Paw
15 Right Hip 16 Right Knee
17 Right Back Paw

Annotations Overview

Image Background

Id Background type Id Background type
1 grass or savanna 2 forest or shrub
3 mud or rock 4 snowfield
5 zoo or human habitation 6 swamp or rivderside
7 desert or gobi 8 mugshot

Download

The dataset and corresponding files can be downloaded from

[Google Drive] [Baidu Pan] (code: 6uz6)

(Optional) The full version with both labeled and unlabeled images can be downloaded with the script provided here

[Google Drive] [Baidu Pan] (code: 5lxi)

Training Code

Here we provide the example of training models with the AP-10K dataset. The code is based on the mmpose project.

Installation

Please refer to install.md for Installation.

Dataset Preparation

Please download the dataset from the Download Section, and please extract the dataset under the data folder, e.g.,

mkdir data
unzip ap-10k.zip -d data/
mv data/ap-10k data/ap10k

The extracted dataset should be looked like:

AP-10K
├── mmpose
├── docs
├── tests
├── tools
├── configs
|── data
    │── ap10k
        │-- annotations
        │   │-- ap10k-train-split1.json
        │   |-- ap10k-train-split2.json
        │   |-- ap10k-train-split3.json
        │   │-- ap10k-val-split1.json
        │   |-- ap10k-val-split2.json
        │   |-- ap10k-val-split3.json
        │   |-- ap10k-test-split1.json
        │   |-- ap10k-test-split2.json
        │   |-- ap10k-test-split3.json
        │-- data
        │   │-- 000000000001.jpg
        │   │-- 000000000002.jpg
        │   │-- ...

Inference

The checkpoints can be downloaded from HRNet-w32, HRNet-w48, ResNet-50, ResNet-101.

python tools/test.py <CONFIG_FILE> <DET_CHECKPOINT_FILE>

Training

bash tools/dist_train.sh <CONFIG_FILE> <GPU_NUM>

For example, to train the HRNet-w32 model with 1 GPU, please run:

bash tools/dist_train.sh configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/ap10k/hrnet_w32_ap10k_256x256.py 1

Key Questions

1. For what purpose was the dataset created?

AP-10K is created to facilitate research in the area of animal pose estimation. It is important to study several challenging questions in the context of more training data from diverse species are available, such as:

  1. how about the performance of different representative human pose models on the animal pose estimation task?
  2. will the representation ability of a deep model benefit from training on a large-scale dataset with diverse species?
  3. how about the impact of pretraining, e.g., on the ImageNet dataset or human pose estimation dataset, in the context of the large-scale of dataset with diverse species?
  4. how about the intra and inter family generalization ability of a model trained using data from specific species or family?

However, previous datasets for animal pose estimation contain limited number of animal species. Therefore, it is impossible to study these questions using existing datasets as they contains at most 5 species, which is far from enough to get sound conclusion. By contrast, AP-10K has 23 family and 54 species and thus can help researchers to study these questions.

2. Was any cleaning of the data done?

We removed replicated images by using aHash algorithm to detect similar images and manually checking. Images with heavy occlusion and logos were removed manually. The cleaned images were categorized into diifferent species and family.

3. How were the keypoints instructed to be labeled?

Annotators first learned about the physiognomy, body structure and distribution of keypoints of the animals. Then, five images of each species were presented to annotators to annotate keypoints, which were used to assess their annotation quality. Annotators with good annotation quality were further trained on how to deal with the partial absence of the body due to occlusion and were involved in the subsequent annotation process. Annotators were asked to annotate all visible keypoints. For the occluded keypoints, they were asked to annotate keypoints whose location they could estimate based on body plan, pose, and the symmetry property of the body, where the length of occluded limbs or the location of occluded keypoints could be inferred from the visible limbs or keypoints. Other keypoints were left unlabeled.

To guarantee the annotation quality, we have adopted a sequential labeling strategy. Three rounds of cross-check and correction are conducted with both manual check and automatic check (according to specific rules, \eg, keypoints belonging to an instance are in the same bounding box) to reduce the possibility of mislabeling. To begin with, annotators labeled keypoints of each instance and submited a version-1 labels to senior well-trained annotators, and then senior well-trained annotators checked the quality of the version-1 labels and returned an error list to annotators, annotators would fix these errors according to it. Finally, annotators submited a fixed version-2 labels to senior well-trained annotator and they did the last correction to find any potential mislabeled keypoints. After all three rounds of work had been done, a release-version of dataset with high-quality labels was finished.

4. Unity of keypoint and difference of walk type

If we only follow the biology and define the keypoints by the position of the bones, the actual labeled keypoint maybe hard, even invisible for labeling and which look like inharmonious with animal’s movement. Ungulates (or other unguligrade animals) mainly rely on their toes in movement, with their paws, ankles, and knees observable. Compared with these keypoints, the actual hips are less distinctive and difficult to annotate since they are hidden in their body. A similar phenomenon can also be observed in digitigrade animals. On the other hand, plantigrade animals always walk with metatarsals (paws) flat on the ground, with their paws, knees, and hips more distinguishable in movement. Thus, we denote the paws, ankles, and knees for the unguligrade and digitigrade animals, and the paws, knees, and hips for the plantigrade animals. For simplicity, we use 'hip' to denote the knees for unguligrade and digitigrade animals and 'knee' for their ankles. For plantigrade animals, the annotation is the same as the biology definition. Thus, the visual distribution of keypoints is similar across the dataset, as the 'knee' is around the middle of the limbs for all animals.

5. What tasks could the dataset be used for?

AP-10K can be used for the research of animal pose estimation. Besides, it can also be used for specific machine learning topics such as few-shot learning, domain generalization, self-supervised learning. Please see the Discussion part in the paper.

License

The dataset follows CC-BY-4.0 license.

Owner
AP-10K
AP-10K
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
Package for working with hypernetworks in PyTorch.

Package for working with hypernetworks in PyTorch.

Christian Henning 71 Jan 05, 2023
LoL Runes Recommender With Python

LoL-Runes-Recommender Para ejecutar la aplicación se debe llamar a execute_app.p

Sebastián Salinas 1 Jan 10, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
The official code repository for examples in the O'Reilly book 'Generative Deep Learning'

Generative Deep Learning Teaching Machines to paint, write, compose and play The official code repository for examples in the O'Reilly book 'Generativ

David Foster 1.3k Dec 29, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
Management Dashboard for Torchserve

Torchserve Dashboard Torchserve Dashboard using Streamlit Related blog post Usage Additional Requirement: torchserve (recommended:v0.5.2) Simply run:

Ceyda Cinarel 103 Dec 10, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023