A 1.3B text-to-image generation model trained on 14 million image-text pairs

Overview

minDALL-E on Conceptual Captions

minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for non-commercial purposes.

a painting of a bird in the style of asian painting a photo of san francisco's golden gate bridge in black and white tone

Environment Setup

  • Basic setup
PyTorch == 1.8.0
CUDA >= 10.1
  • Other packages
pip install -r requirements.txt

Model Checkpoint

  • Model structure (two-stage autoregressive model)
    • Stage1: Unlike the original DALL-E [1], we replace Discrete VAE with VQGAN [2] to generate high-quality samples effectively. We slightly fine-tune vqgan_imagenet_f16_16384, provided by the official VQGAN repository, on FFHQ [3] as well as ImageNet.
    • Stage2: We train our 1.3B transformer from scratch on 14 million image-text pairs from CC3M [4] and CC12M [5]. For the more detailed model spec, please see configs/dalle-1.3B.yaml.
  • You can download the pretrained models including the tokenizer from this link. This will require about 5GB space.

Sampling

  • Given a text prompt, the code snippet below generates candidate images and re-ranks them using OpenAI's CLIP [6].
  • This has been tested under a single V100 of 32GB memory. In the case of using GPUs with limited memory, please lower down num_candidates to avoid OOM.
from matplotlib import pyplot as plt
import clip
from dalle.models import Dalle
from dalle.utils.utils import set_seed, clip_score

device = 'cuda:0'
set_seed(0)

prompt = "A painting of a monkey with sunglasses in the frame"
model = Dalle.from_pretrained('minDALL-E/1.3B')  # This will automatically download the pretrained model.
model.to(device=device)

# Sampling
images = model.sampling(prompt=prompt,
                        top_k=256, # It is recommended that top_k is set lower than 256.
                        top_p=None,
                        softmax_temperature=1.0,
                        num_candidates=96,
                        device=device).cpu().numpy()
images = np.transpose(images, (0, 2, 3, 1))

# CLIP Re-ranking
model_clip, preprocess_clip = clip.load("ViT-B/32", device=device)
model_clip.to(device=device)
rank = clip_score(prompt=prompt,
                  images=images,
                  model_clip=model_clip,
                  preprocess_clip=preprocess_clip,
                  device=device)

# Plot images
images = images[rank]
plt.imshow(images[0])
plt.show()

Samples (Top-K=256, Temperature=1.0)

  • "a painting of a {cat, dog} with sunglasses in the frame"

  • "a large {pink, black} elephant walking on the beach"

  • "Eiffel tower on a {desert, mountain}"

Quantitative Results

  • We have validated minDALL-E on the CC3M validation set (in-distribution evaluation) and MS-COCO (zero-shot evaluation).
  • For CC3M, we measure the cosine similarity between image and text representations from the pretrained CLIP model (ViT-B/32), referred to as CLIP-score.
  • For MS-COCO, we compute FID between 30K generated and real samples from MS-COCO 2017, where we randomly choose 30K captions from COCO as in DALL-E. We select the best out of 32 candidates by CLIP re-ranking.
Model CC3M:CLIP-score (higher is better) MS-COCO:FID-30K (lower is better)
VQGAN [2] 0.20 -
ImageBART [7] 0.23 -
DALL-E [1] - 27.5
minDALL-E 0.26 14.7

Transfer Learning Examples

  • minDALL-E, which is pre-trained on noisy text supervisions, could be transferable to class-conditional and unconditional generation tasks. To validate this, we simply fine-tune it on ImageNet over 8 epochs in the case of class-conditional generation and unconditional generation.
  • The commands below fine-tune the pretrained DALL-E. It takes about 36 hours on 8 V100 GPUs.
# unconditinoal image generation for imagenet (256x256)
python examples/transfer_learning_ex.py -d=configs/transfer-imagenet-uncond-gen.yaml
                                        -u=[MODEL_CKPT]
                                        -r=[RESULT_PATH]
                                        --n-gpus=[NUM_GPUS]

# class-conditinoal image generation for imagenet (256x256)
python examples/transfer_learning_ex.py -d=configs/transfer-imagenet-clscond-gen.yaml
                                        -u=[MODEL_CKPT]
                                        -r=[RESULT_PATH]
                                        --n-gpus=[NUM_GPUS]
  • We compute FID-50K between 50K generated samples and all ImageNet training samples, where we use top-k=256 and softmax temperature=1.0 for generation. All results are obtained without the rejection sampling. Interestingly, our model achieves very competitive performance with baselines, even though minDALL-E is fine-tuned in a few epochs.
Model Params FID-50K(class-cond.) FID-50K(uncond.)
VQ-GAN 1.4B 15.78 -
ImageBART 3.5B 21.19 -
minDALL-E 1.3B 15.55 37.58

BibTex

If you find this repository useful in your research, please cite:

@misc{kakaobrain2021minDALL-E,
  title         = {minDALL-E on Conceptual Captions},
  author        = {Saehoon Kim, Sanghun Cho, Chiheon Kim, Doyup Lee, and Woonhyuk Baek},
  year          = {2021},
  howpublished  = {\url{https://github.com/kakaobrain/minDALL-E}},
}

References

  • [1] Ramesh et al. Zero-Shot Text-to-Image Generation, ICML 2021.
  • [2] Esser et al. Taming Transformers for High-Resolution Image Synthesis, CVPR 2021.
  • [3] Karras et al. A Style-Based Generator Architecture for Generative Adversarial Networks, CVPR 2019.
  • [4] Sharma et al. Conceptual Captions: A Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning, ACL 2018.
  • [5] Changpinyo et al. Conceptual 12M: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts, CVPR 2021.
  • [6] Radford et al. Learning Transferable Visual Models From Natural Language Supervision, ICML 2021.
  • [7] Esser et al. ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis, NeurIPS 2021.
  • [8] https://github.com/karpathy/minGPT

Licenses

  • The source codes are licensed under Apache 2.0 License.
  • The stage2 pretrained weights are licensed under CC-BY-NC-SA 4.0 License.

Contact

We hope that minDALL-E helps various projects in research-oriented institutes and startups. If you would like to collaborate with us or share a feedback, please e-mail to us, [email protected]

Limitations

Although minDALL-E is trained on a small set (14M image-text pairs), this might be vulnerable to malicious attacks from the prompt engineering to generate socially unacceptable images. If you obersve these images, please report the "prompt" and "generated images" to us.

Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Efficient Sparse Attacks on Videos using Reinforcement Learning

EARL This repository provides a simple implementation of the work "Efficient Sparse Attacks on Videos using Reinforcement Learning" Example: Demo: Her

12 Dec 05, 2021
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
Objax Apache-2Objax (๐Ÿฅ‰19 ยท โญ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
Object Detection Projekt in GKI WS2021/22

tfObjectDetection Object Detection Projekt with tensorflow in GKI WS2021/22 Docker Container: docker run -it --name --gpus all -v path/to/project:p

Tim Eggers 1 Jul 18, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Automatically align face images ๐Ÿ™ƒโ†’๐Ÿ™‚. Can also do windowing and warping.

Automatic Face Alignment (AFA) Carl M. Gaspar & Oliver G.B. Garrod You have lots of photos of faces like this: But you want to line up all of the face

Carl Michael Gaspar 15 Dec 12, 2022
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
CNN visualization tool in TensorFlow

tf_cnnvis A blog post describing the library: https://medium.com/@falaktheoptimist/want-to-look-inside-your-cnn-we-have-just-the-right-tool-for-you-ad

InFoCusp 778 Jan 02, 2023
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
Learning Visual Words for Weakly-Supervised Semantic Segmentation

[IJCAI 2021] Learning Visual Words for Weakly-Supervised Semantic Segmentation Implementation of IJCAI 2021 paper Learning Visual Words for Weakly-Sup

Lixiang Ru 24 Oct 05, 2022