Install alphafold on the local machine, get out of docker.

Overview

header

AlphaFold

This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP14 and published in Nature. For simplicity, we refer to this model as AlphaFold throughout the rest of this document.

Any publication that discloses findings arising from using this source code or the model parameters should cite the AlphaFold paper.

CASP14 predictions

First time setup

The following steps are required in order to run AlphaFold:

Install on Ubuntu

  1. Requirements

  2. Install softwares

    git clone https://github.com/kuixu/alphafold.git
    cd alphafold
    
    ./install_on_local.sh

    or step by step

        
    conda create -n af2 python=3.8 -y
    conda activate af2
    
    conda install -y -c nvidia cudnn==8.0.4
    conda install -y -c bioconda hmmer hhsuite==3.3.0 kalign2
    
    conda install -y -c conda-forge \
        openmm=7.5.1 \
        pdbfixer \
        pip
    
    # python pkgs
    pip3 install --upgrade pip \
        && pip3 install -r ./requirements.txt \
        && pip3 install --upgrade "jax[cuda111]" -f \
        https://storage.googleapis.com/jax-releases/jax_releases.html
    
    # work_path=/path/to/alphafold-code
    work_path=$(PWD)
    
    # update openmm 
    a=$(which python)
    cd $(dirname $(dirname $a))/lib/python3.8/site-packages
    patch -p0 < $work_path/docker/openmm.patch
    
    
    
  3. Download genetic databases (see below).

  4. Download model parameters (see below).

  5. Set path.

    # Set to target of scripts/download_all_databases.sh
    DOWNLOAD_DIR = '/path/to/database'
    
    # Path to a directory that will store the results.
    output_dir = '/path/to/output_dir'
    
    

Genetic databases

This step requires rsync and aria2c to be installed on your machine.

AlphaFold needs multiple genetic (sequence) databases to run:

We provide a script scripts/download_all_data.sh that can be used to download and set up all of these databases. This should take 8–12 hours.

📒 Note: The total download size is around 428 GB and the total size when unzipped is 2.2 TB. Please make sure you have a large enough hard drive space, bandwidth and time to download.

This script will also download the model parameter files. Once the script has finished, you should have the following directory structure:

$DOWNLOAD_DIR/                             # Total: ~ 2.2 TB (download: 428 GB)
    bfd/                                   # ~ 1.8 TB (download: 271.6 GB)
        # 6 files.
    mgnify/                                # ~ 64 GB (download: 32.9 GB)
        mgy_clusters.fa
    params/                                # ~ 3.5 GB (download: 3.5 GB)
        # 5 CASP14 models,
        # 5 pTM models,
        # LICENSE,
        # = 11 files.
    pdb70/                                 # ~ 56 GB (download: 19.5 GB)
        # 9 files.
    pdb_mmcif/                             # ~ 206 GB (download: 46 GB)
        mmcif_files/
            # About 180,000 .cif files.
        obsolete.dat
    uniclust30/                            # ~ 87 GB (download: 24.9 GB)
        uniclust30_2018_08/
            # 13 files.
    uniref90/                              # ~ 59 GB (download: 29.7 GB)
        uniref90.fasta

Model parameters

While the AlphaFold code is licensed under the Apache 2.0 License, the AlphaFold parameters are made available for non-commercial use only under the terms of the CC BY-NC 4.0 license. Please see the Disclaimer below for more detail.

The AlphaFold parameters are available from https://storage.googleapis.com/alphafold/alphafold_params_2021-07-14.tar, and are downloaded as part of the scripts/download_all_data.sh script. This script will download parameters for:

  • 5 models which were used during CASP14, and were extensively validated for structure prediction quality (see Jumper et al. 2021, Suppl. Methods 1.12 for details).
  • 5 pTM models, which were fine-tuned to produce pTM (predicted TM-score) and predicted aligned error values alongside their structure predictions (see Jumper et al. 2021, Suppl. Methods 1.9.7 for details).

Running AlphaFold on local

  1. Clone this repository and cd into it.

  2. Run run_alphafold.py pointing to a FASTA file containing the protein sequence for which you wish to predict the structure. If you are predicting the structure of a protein that is already in PDB and you wish to avoid using it as a template, then max_template_date must be set to be before the release date of the structure. For example, for the T1050 CASP14 target:

    python3 run_alphafold.py --fasta_paths=T1050.fasta --max_template_date=2020-05-14
    # or simply
    exp/run_local.sh T1050.fasta

    By default, Alphafold will attempt to use all visible GPU devices. To use a subset, specify a comma-separated list of GPU UUID(s) or index(es) using the CUDA_VISIBLE_DEVICES=0.

  3. You can control AlphaFold speed / quality tradeoff by adding either --preset=full_dbs or --preset=casp14 to the run command. We provide the following presets:

    • casp14: This preset uses the same settings as were used in CASP14. It runs with all genetic databases and with 8 ensemblings.
    • full_dbs: The model in this preset is 8 times faster than the casp14 preset with a very minor quality drop (-0.1 average GDT drop on CASP14 domains). It runs with all genetic databases and with no ensembling.

    Running the command above with the casp14 preset would look like this:

    python3 docker/run_docker.py --fasta_paths=T1050.fasta --max_template_date=2020-05-14 --preset=casp14

AlphaFold output

The outputs will be in a subfolder of output_dir in run_docker.py. They include the computed MSAs, unrelaxed structures, relaxed structures, ranked structures, raw model outputs, prediction metadata, and section timings. The output_dir directory will have the following structure:

output_dir/
    features.pkl
    ranked_{0,1,2,3,4}.pdb
    ranking_debug.json
    relaxed_model_{1,2,3,4,5}.pdb
    result_model_{1,2,3,4,5}.pkl
    timings.json
    unrelaxed_model_{1,2,3,4,5}.pdb
    msas/
        bfd_uniclust_hits.a3m
        mgnify_hits.sto
        uniref90_hits.sto

The contents of each output file are as follows:

  • features.pkl – A pickle file containing the input feature Numpy arrays used by the models to produce the structures.
  • unrelaxed_model_*.pdb – A PDB format text file containing the predicted structure, exactly as outputted by the model.
  • relaxed_model_*.pdb – A PDB format text file containing the predicted structure, after performing an Amber relaxation procedure on the unrelaxed structure prediction, see Jumper et al. 2021, Suppl. Methods 1.8.6 for details.
  • ranked_*.pdb – A PDB format text file containing the relaxed predicted structures, after reordering by model confidence. Here ranked_0.pdb should contain the prediction with the highest confidence, and ranked_4.pdb the prediction with the lowest confidence. To rank model confidence, we use predicted LDDT (pLDDT), see Jumper et al. 2021, Suppl. Methods 1.9.6 for details.
  • ranking_debug.json – A JSON format text file containing the pLDDT values used to perform the model ranking, and a mapping back to the original model names.
  • timings.json – A JSON format text file containing the times taken to run each section of the AlphaFold pipeline.
  • msas/ - A directory containing the files describing the various genetic tool hits that were used to construct the input MSA.
  • result_model_*.pkl – A pickle file containing a nested dictionary of the various Numpy arrays directly produced by the model. In addition to the output of the structure module, this includes auxiliary outputs such as distograms and pLDDT scores. If using the pTM models then the pTM logits will also be contained in this file.

This code has been tested to match mean top-1 accuracy on a CASP14 test set with pLDDT ranking over 5 model predictions (some CASP targets were run with earlier versions of AlphaFold and some had manual interventions; see our forthcoming publication for details). Some targets such as T1064 may also have high individual run variance over random seeds.

Inferencing many proteins

The provided inference script is optimized for predicting the structure of a single protein, and it will compile the neural network to be specialized to exactly the size of the sequence, MSA, and templates. For large proteins, the compile time is a negligible fraction of the runtime, but it may become more significant for small proteins or if the multi-sequence alignments are already precomputed. In the bulk inference case, it may make sense to use our make_fixed_size function to pad the inputs to a uniform size, thereby reducing the number of compilations required.

We do not provide a bulk inference script, but it should be straightforward to develop on top of the RunModel.predict method with a parallel system for precomputing multi-sequence alignments. Alternatively, this script can be run repeatedly with only moderate overhead.

Note on reproducibility

AlphaFold's output for a small number of proteins has high inter-run variance, and may be affected by changes in the input data. The CASP14 target T1064 is a notable example; the large number of SARS-CoV-2-related sequences recently deposited changes its MSA significantly. This variability is somewhat mitigated by the model selection process; running 5 models and taking the most confident.

To reproduce the results of our CASP14 system as closely as possible you must use the same database versions we used in CASP. These may not match the default versions downloaded by our scripts.

For genetics:

For templates:

  • PDB: (downloaded 2020-05-14)
  • PDB70: (downloaded 2020-05-13)

An alternative for templates is to use the latest PDB and PDB70, but pass the flag --max_template_date=2020-05-14, which restricts templates only to structures that were available at the start of CASP14.

Citing this work

If you use the code or data in this package, please cite:

@Article{AlphaFold2021,
  author  = {Jumper, John and Evans, Richard and Pritzel, Alexander and Green, Tim and Figurnov, Michael and Ronneberger, Olaf and Tunyasuvunakool, Kathryn and Bates, Russ and {\v{Z}}{\'\i}dek, Augustin and Potapenko, Anna and Bridgland, Alex and Meyer, Clemens and Kohl, Simon A A and Ballard, Andrew J and Cowie, Andrew and Romera-Paredes, Bernardino and Nikolov, Stanislav and Jain, Rishub and Adler, Jonas and Back, Trevor and Petersen, Stig and Reiman, David and Clancy, Ellen and Zielinski, Michal and Steinegger, Martin and Pacholska, Michalina and Berghammer, Tamas and Bodenstein, Sebastian and Silver, David and Vinyals, Oriol and Senior, Andrew W and Kavukcuoglu, Koray and Kohli, Pushmeet and Hassabis, Demis},
  journal = {Nature},
  title   = {Highly accurate protein structure prediction with {AlphaFold}},
  year    = {2021},
  doi     = {10.1038/s41586-021-03819-2},
  note    = {(Accelerated article preview)},
}

Acknowledgements

AlphaFold communicates with and/or references the following separate libraries and packages:

We thank all their contributors and maintainers!

License and Disclaimer

This is not an officially supported Google product.

Copyright 2021 DeepMind Technologies Limited.

AlphaFold Code License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Model Parameters License

The AlphaFold parameters are made available for non-commercial use only, under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. You can find details at: https://creativecommons.org/licenses/by-nc/4.0/legalcode

Third-party software

Use of the third-party software, libraries or code referred to in the Acknowledgements section above may be governed by separate terms and conditions or license provisions. Your use of the third-party software, libraries or code is subject to any such terms and you should check that you can comply with any applicable restrictions or terms and conditions before use.

Owner
Kui Xu
Researcher, interested in Computational Biology, and 3D Computer Vision.
Kui Xu
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022
Link prediction using Multiple Order Local Information (MOLI)

Understanding the network formation pattern for better link prediction Authors: [e

Wu Lab 0 Oct 18, 2021
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021
Hcaptcha-challenger - Gracefully face hCaptcha challenge with Yolov5(ONNX) embedded solution

hCaptcha Challenger 🚀 Gracefully face hCaptcha challenge with Yolov5(ONNX) embe

593 Jan 03, 2023
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022
Understanding Hyperdimensional Computing for Parallel Single-Pass Learning

Understanding Hyperdimensional Computing for Parallel Single-Pass Learning Authors: Tao Yu* Yichi Zhang* Zhiru Zhang Christopher De Sa *: Equal Contri

Cornell RelaxML 4 Sep 08, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
Code for Transformer Hawkes Process, ICML 2020.

Transformer Hawkes Process Source code for Transformer Hawkes Process (ICML 2020). Run the code Dependencies Python 3.7. Anaconda contains all the req

Simiao Zuo 111 Dec 26, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021