Fuse radar and camera for detection

Related tags

Deep LearningSAF-FCOS
Overview

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor

This project hosts the code for implementing the SAF-FCOS algorithm for object detection, as presented in our paper:

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor;
Shuo Chang, YiFan Zhang, Fan Zhang, Xiaotong Zhao, Sai Huang, ZhiYong Feng and Zhiqing Wei;
In: Sensors, 2019.

And the whole project is built upon FCOS, Below is FCOS license.

FCOS for non-commercial purposes

Copyright (c) 2019 the authors
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The full paper is available at: https://www.mdpi.com/1424-8220/20/4/956.

You should known

Please read the FCOS project first FCOS-README.md

Installation

Please check INSTALL.md for installation instructions.

Generate Data

  1. Please download Full dataset (v1.0) of nuScenes dataset from the link. download

  2. Then, upload all download tar files to an ubuntu server, and uncompress all *.tar files in a specific folder:

mkdir ~/Data/nuScenes
mv AllDownloadTarFiles ~/Data/nuScenes
cd ~/Data/nuScenes
for f in *.tar; do tar -xvf "$f"; done
  1. Convert the radar pcd file as image:
python tools/nuscenes/convert_radar_point_to_image.py --dataroot ~/Data/nuScenes --version v1.0-mini
python tools/nuscenes/convert_radar_point_to_image.py --dataroot ~/Data/nuScenes --version v1.0-trainval
python tools/nuscenes/convert_radar_point_to_image.py --dataroot ~/Data/nuScenes --version v1.0-test
  1. Calculate the norm info of radar images:
python tools/nuscenes/extract_pc_image_norm_info_from_image.py --datadir ~/Data/nuScenes --outdir ~/Data/nuScenes/v1.0-trainval
  1. Generate 2D detections results for nuScenes CAM_FRONT images by 'FCOS_imprv_dcnv2_X_101_64x4d_FPN_2x.pth',
    some of detection results should be refined by labelers to get tighter bboxes,
    and save the detection results as txt file in the folder ~/Data/nuScenes/fcos/CAM_FRONT:
    detection1 detection2 The detection results are saved as '0, 1479.519, 611.043, 1598.754, 849.447'. The first column is category, and the last stands for position.
    For convenience, we supply our generated 2D txt files in cloud drive and in folder data/fcos.zip.
    For users not in China, please download from google drive.
    For users in China, please download from baidu drive.

    链接:https://pan.baidu.com/s/11NNYpmBbs5sSqSsFxl-z7Q 
    提取码:6f1x 

    If you use our generated txt files, please:

mv fcos.zip ~/Data/nuScenes
unzip fcos.zip
  1. Generate 2D annotations in coco style for model training and test:
python tools/nuscenes/generate_2d_annotations_by_fcos.py --datadir ~/Data/nuScenes --outdir ~/Data/nuScenes/v1.0-trainval

Prepare training

The following command line will train fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml on 8 GPUs with Synchronous Stochastic Gradient Descent (SGD):

python -m torch.distributed.launch \
       --nproc_per_node=8 \
       --master_port=$((RANDOM + 10000)) \
       tools/train_net.py \
       --config-file configs/fcos_nuscenes/fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml \
       DATALOADER.NUM_WORKERS 2 \
       OUTPUT_DIR tmp/fcos_imprv_R_50_FPN_1x

Prepare Test

The following command line will test fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml on 8 GPUs:

python -m torch.distributed.launch \
       --nproc_per_node=8  
       --master_port=$((RANDOM + 10000)) \
       tools/test_epoch.py \
       --config-file configs/fcos_nuscenes/fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml \
       --checkpoint-file tmp/fcos_imprv_R_50_FPN_1x_ATTMIX_135_Circle_07/model_0010000.pth \ 
       OUTPUT_DIR tmp/fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07

Citations

Please consider citing our paper and FOCS in your publications if the project helps your research. BibTeX reference is as follows.

@article{chang2020spatial,
  title={Spatial Attention fusion for obstacle detection using mmwave radar and vision sensor},
  author={Chang, Shuo and Zhang, Yifan and Zhang, Fan and Zhao, Xiaotong and Huang, Sai and Feng, Zhiyong and Wei, Zhiqing},
  journal={Sensors},
  volume={20},
  number={4},
  pages={956},
  year={2020},
  publisher={Multidisciplinary Digital Publishing Institute}
}
@inproceedings{tian2019fcos,
  title   =  {{FCOS}: Fully Convolutional One-Stage Object Detection},
  author  =  {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  booktitle =  {Proc. Int. Conf. Computer Vision (ICCV)},
  year    =  {2019}
}
Owner
ChangShuo
Machine learning. Visual Object Tracking. Signal Processing. Multi-Sensor Fusion
ChangShuo
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
【CVPR 2021, Variational Inference Framework, PyTorch】 From Rain Generation to Rain Removal

From Rain Generation to Rain Removal (CVPR2021) Hong Wang, Zongsheng Yue, Qi Xie, Qian Zhao, Yefeng Zheng, and Deyu Meng [PDF&&Supplementary Material]

Hong Wang 48 Nov 23, 2022
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

SEOVER-Master This code is the implementation of paper: SEOVER: Sentence-level Emotion Orientation Vector based Conversation Emotion Recognition Model

4 Feb 24, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
PyTorch implementation of CVPR'18 - Perturbative Neural Networks

This is an attempt to reproduce results in Perturbative Neural Networks paper. See original repo for details.

Michael Klachko 57 May 14, 2021
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022