List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

Overview

deepfake-models

List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, etc.

In order to protect the authors' intellectual property rights, I will not upload their codes, pre-trained models or anything else. If necessary, please click the code link switching to their GitHub page to download.

Here are some faceswapped videos for CihaNet.

Deepfakes

  • Deepfake is the most popular face swapping application on GitHub. [code] | [forum]

    However, it is a subject-aware model, which means you need train a unique model for a specific person. For example, you should trained a CageNet for Nicolas Cage and a SwiftNet for Taylor Swift separately, then swapped the faces between these two persons.

CihaNet

  • One-stage Context and Identity Hallucination Network. ACM MM 2021 [paper]

    Yinglu Liu, Mingcan Xiang, Hailin Shi, Tao Mei.

    Propose a one-stage face swapping network, which can divide the id-areas and co-areas by hallucination maps and learn the corresponding features effectively. The network can be trained with large-scale unlabeled data, without annotation dependency.

FaceController

  • FaceController: Controllable Attribute Editing for Face in the Wild. AAAI 2021 [paper]

    Zhiliang Xu, Xiyu Yu, Zhibin Hong, Zhen Zhu, Junyu Han, Jingtuo Liu, Errui Ding, Xiang Bai.

    decouple identity, expression, pose, and illumination using 3D priors; separate texture and colors by using region-wise style codes. All the information is embedded into adversarial learning by our identity-style normalization module. Disentanglement losses are proposed to enhance the generator to extract information independently from each attribute.

FaceInpainter

  • FaceInpainter High Fidelity Face Adaptation to Heterogeneous Domains. CVPR 2021 [paper]

    Jia Li, Zhaoyang Li, Jie Cao, Xingguang Song, Ran He.** propose a novel two-stage framework named FaceInpainter to implement controllable Identity-Guided Face Inpainting (IGFI) under heterogeneous domains. Concretely, by explicitly disentangling foreground and background of the target face, the first stage focuses on adaptive face fitting to the fixed background via a Styled Face Inpainting Network (SFI-Net), with 3D priors and texture code of the target, as well as identity factor of the source face.

SimSwap

  • SimSwap: An Efficient Framework For High Fidelity Face Swapping. ACM MM 2020 [paper] | [code]

    Renwang Chen, Xuanhong Chen, Bingbing Ni1, and Yanhao Ge.

    Simswap propose the Weak Feature Matching Loss which efficiently helps their framework to preserve the facial attributes in an implicit way. Experimental results show that they can preserve attributes better than previous state-of-the-art methods.

FaceShifter

  • FaceShifter: Towards High Fidelity And Occlusion Aware Face Swapping. CVPR 2020 [paper] | [homepage]

    Lingzhi Li, Jianmin Bao, Hao Yang, Dong Chen, Fang Wen.

    Faceshifter is a novel two-stage framework for high fidelity and occlusion aware face-swapping. It's able to generate high fidelity identity preserving face swap results and, in comparison to previous methods, deal with facial occlusions using a second synthesis stage consisting of a Heuristic Error Acknowledging Refinement Network (HEAR-Net).

    • in the first stage, generate the swapped face in high-fidelity by exploiting and integrating the target attributes thoroughly and adaptively.
    • in the second stage, propose a novel Heuristic Error Acknowledging Refinement Network (HEAR-Net) to address the challenging facial occlusions.

FSGAN

  • FSGAN: Subject Agnostic Face Swapping and Reenactment. ICCV 2019 [paper] | [code] | [homepage-Nirkin] | [homepage-Hassner]

    Yuval Nirkin, Yosi Keller, Tal Hassner.

    Unlike previous work, FSGAN is subject agnostic and can be applied to pairs of faces without requiring training on those faces. Besides, they introduced new loss functions for better performance.

IPGAN

  • Towards Open-Set Identity Preserving Face Synthesis. CVPR 2018 [paper] | [homepage]

    Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang Hua.

    propose an Open-Set Identity Preserving Generative Adversarial Network framework for disentangling the identity and attributes of faces, synthesizing faces from the recombined identity and attributes.

FaceSwap-MarekKowalski

  • FaceSwap is an app that have originally created as an exercise for students in "Mathematics in Multimedia". [code] | [homepage]

    This is a 3D-based method. It uses face alignment, 3D face template, Gauss-Newton optimization, and image blending to swap the face of a person seen by the camera with a face of a person in a provided image.

FaceSwap-Nirkin et al.

  • On face segmentation, face swapping, and face perception.. F&G 2018 [paper] | [code] [homepage]

    Yuval Nirkin, Iacopo Masi, Anh Tran Tuan, Tal Hassner, and Gerard Medioni.

    • Instead of tailoring systems for face segmentation, as others previously proposed, this work shows that a standard fully convolutional network (FCN) can achieve remarkably fast and accurate segmentation, provided that it is trained on a rich enough example set.
    • use special image segmentation to enable robust face-swapping under unprecedented conditions.
    • fit 3D face shapes
    • measure the effect of intra- and inter-subject face swapping on recognition. Generally speaking, intra-subject swapped faces remain as recognizable as their sources, while better face-swapping produces less recognizable inter-subject results.
Owner
Mingcan Xiang
CE Ph.D. Student @ UMass Amherst
Mingcan Xiang
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
Learning-based agent for Google Research Football

TiKick 1.Introduction Learning-based agent for Google Research Football Code accompanying the paper "TiKick: Towards Playing Multi-agent Football Full

Tsinghua AI Research Team for Reinforcement Learning 90 Dec 26, 2022
Python package for dynamic system estimation of time series

PyDSE Toolset for Dynamic System Estimation for time series inspired by DSE. It is in a beta state and only includes ARMA models right now. Documentat

Blue Yonder GmbH 40 Oct 07, 2022
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
Code for our CVPR 2022 Paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection"

GEN-VLKT Code for our CVPR 2022 paper "GEN-VLKT: Simplify Association and Enhance Interaction Understanding for HOI Detection". Contributed by Yue Lia

Yue Liao 47 Dec 04, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
Official implementation of Deep Convolutional Dictionary Learning for Image Denoising.

DCDicL for Image Denoising Hongyi Zheng*, Hongwei Yong*, Lei Zhang, "Deep Convolutional Dictionary Learning for Image Denoising," in CVPR 2021. (* Equ

Z80 91 Dec 21, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning

PClean: A Domain-Specific Probabilistic Programming Language for Bayesian Data Cleaning Warning: This is a rapidly evolving research prototype.

MIT Probabilistic Computing Project 190 Dec 27, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
The repository for the paper "When Do You Need Billions of Words of Pretraining Data?"

pretraining-learning-curves This is the repository for the paper When Do You Need Billions of Words of Pretraining Data? Edge Probing We use jiant1 fo

ML² AT CILVR 19 Nov 25, 2022
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023