Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

Overview

SinGAN

Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19)

Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

ICCV 2019 Best paper award (Marr prize)

Random samples from a single image

With SinGAN, you can train a generative model from a single natural image, and then generate random samples from the given image, for example:

SinGAN's applications

SinGAN can be also used for a line of image manipulation tasks, for example: This is done by injecting an image to the already trained model. See section 4 in our paper for more details.

Citation

If you use this code for your research, please cite our paper:

@inproceedings{rottshaham2019singan,
  title={SinGAN: Learning a Generative Model from a Single Natural Image},
  author={Rott Shaham, Tamar and Dekel, Tali and Michaeli, Tomer},
  booktitle={Computer Vision (ICCV), IEEE International Conference on},
  year={2019}
}

Code

Install dependencies

python -m pip install -r requirements.txt

This code was tested with python 3.6, torch 1.4

Please note: the code currently only supports torch 1.4 or earlier because of the optimization scheme.

For later torch versions, you may try this repository: https://github.com/kligvasser/SinGAN (results won't necessarily be identical to the official implementation).

Train

To train SinGAN model on your own image, put the desired training image under Input/Images, and run

python main_train.py --input_name <input_file_name>

This will also use the resulting trained model to generate random samples starting from the coarsest scale (n=0).

To run this code on a cpu machine, specify --not_cuda when calling main_train.py

Random samples

To generate random samples from any starting generation scale, please first train SinGAN model on the desired image (as described above), then run

python random_samples.py --input_name <training_image_file_name> --mode random_samples --gen_start_scale <generation start scale number>

pay attention: for using the full model, specify the generation start scale to be 0, to start the generation from the second scale, specify it to be 1, and so on.

Random samples of arbitrary sizes

To generate random samples of arbitrary sizes, please first train SinGAN model on the desired image (as described above), then run

python random_samples.py --input_name <training_image_file_name> --mode random_samples_arbitrary_sizes --scale_h <horizontal scaling factor> --scale_v <vertical scaling factor>

Animation from a single image

To generate short animation from a single image, run

python animation.py --input_name <input_file_name> 

This will automatically start a new training phase with noise padding mode.

Harmonization

To harmonize a pasted object into an image (See example in Fig. 13 in our paper), please first train SinGAN model on the desired background image (as described above), then save the naively pasted reference image and it's binary mask under "Input/Harmonization" (see saved images for an example). Run the command

python harmonization.py --input_name <training_image_file_name> --ref_name <naively_pasted_reference_image_file_name> --harmonization_start_scale <scale to inject>

Please note that different injection scale will produce different harmonization effects. The coarsest injection scale equals 1.

Editing

To edit an image, (See example in Fig. 12 in our paper), please first train SinGAN model on the desired non-edited image (as described above), then save the naive edit as a reference image under "Input/Editing" with a corresponding binary map (see saved images for an example). Run the command

python editing.py --input_name <training_image_file_name> --ref_name <edited_image_file_name> --editing_start_scale <scale to inject>

both the masked and unmasked output will be saved. Here as well, different injection scale will produce different editing effects. The coarsest injection scale equals 1.

Paint to Image

To transfer a paint into a realistic image (See example in Fig. 11 in our paper), please first train SinGAN model on the desired image (as described above), then save your paint under "Input/Paint", and run the command

python paint2image.py --input_name <training_image_file_name> --ref_name <paint_image_file_name> --paint_start_scale <scale to inject>

Here as well, different injection scale will produce different editing effects. The coarsest injection scale equals 1.

Advanced option: Specify quantization_flag to be True, to re-train only the injection level of the model, to get a on a color-quantized version of upsampled generated images from the previous scale. For some images, this might lead to more realistic results.

Super Resolution

To super resolve an image, please run:

python SR.py --input_name <LR_image_file_name>

This will automatically train a SinGAN model correspond to 4x upsampling factor (if not exist already). For different SR factors, please specify it using the parameter --sr_factor when calling the function. SinGAN's results on the BSD100 dataset can be download from the 'Downloads' folder.

Additional Data and Functions

Single Image Fréchet Inception Distance (SIFID score)

To calculate the SIFID between real images and their corresponding fake samples, please run:

python SIFID/sifid_score.py --path2real <real images path> --path2fake <fake images path> 

Make sure that each of the fake images file name is identical to its corresponding real image file name. Images should be saved in .jpg format.

Super Resolution Results

SinGAN's SR results on the BSD100 dataset can be download from the 'Downloads' folder.

User Study

The data used for the user study can be found in the Downloads folder.

real folder: 50 real images, randomly picked from the places database

fake_high_variance folder: random samples starting from n=N for each of the real images

fake_mid_variance folder: random samples starting from n=N-1 for each of the real images

For additional details please see section 3.1 in our paper

This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML)

package tests docs license stats support This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML

National Center for Cognitive Research of ITMO University 482 Dec 26, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
A package to predict protein inter-residue geometries from sequence data

trRosetta This package is a part of trRosetta protein structure prediction protocol developed in: Improved protein structure prediction using predicte

Ivan Anishchenko 185 Jan 07, 2023
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
This is Unofficial Repo. Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection (CVPR 2021)

Lips Don't Lie: A Generalisable and Robust Approach to Face Forgery Detection This is a PyTorch implementation of the LipForensics paper. This is an U

Minha Kim 2 May 11, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022