HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

Related tags

Deep LearningHPRNet
Overview

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

Official PyTroch implementation of HPRNet.

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation,
Nermin Samet, Emre Akbas,
Under review. (arXiv pre-print)

Highlights

  • HPRNet is a bottom-up, one-stage and hierarchical keypoint regression method for whole-body pose estimation.
  • HPRNet has the best performance among bottom-up methods for all the whole-body parts.
  • HPRNet achieves SOTA performance for the face (76.0 AP) and hand (51.2 AP) keypoint estimation.
  • Unlike two-stage methods, HPRNet predicts whole-body pose in a constant time independent of the number of people in an image.

COCO-WholeBody Keypoint Estimation Results

Model Body AP Foot AP Face AP Hand AP Whole-body AP Download
HPRNet (DLA) 55.2 / 57.1 49.1 / 50.7 74.6 / 75.4 47.0 / 48.4 31.5 / 32.7 model
HPRNet (Hourglass) 59.4 / 61.1 53.0 / 53.9 75.4 / 76.0 50.4 / 51.2 34.8 / 34.9 model
  • Results are presented without and with test time flip augmentation respectively.
  • All models are trained on COCO-WholeBody train2017 and evaluated on val2017.
  • The models can be downloaded directly from Google drive.

Installation

  1. [Optional but recommended] create a new conda environment.

    conda create --name HPRNet python=3.7
    

    And activate the environment.

    conda activate HPRNet
    
  2. Clone the repo:

    HPRNet_ROOT=/path/to/clone/HPRNet
    git clone https://github.com/nerminsamet/HPRNet $HPRNet_ROOT
    
  3. Install PyTorch 1.4.0:

    conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
    
  4. Install the requirements:

    pip install -r requirements.txt
    
  5. Compile DCNv2 (Deformable Convolutional Networks):

    cd $HPRNet_ROOT/src/lib/models/networks/DCNv2
    ./make.sh
    

Dataset preparation

  • Download the images (2017 Train, 2017 Val) from coco website.

  • Download train and val annotation files.

    ${COCO_PATH}
    |-- annotations
        |-- coco_wholebody_train_v1.0.json
        |-- coco_wholebody_val_v1.0.json
    |-- images
        |-- train2017
        |-- val2017 
    

Evaluation and Training

  • You could find all the evaluation and training scripts in the experiments folder.
  • For evaluation, please download the pretrained models you want to evaluate and put them in HPRNet_ROOT/models/.
  • In the case that you don't have 4 GPUs, you can follow the linear learning rate rule to adjust the learning rate.
  • If the training is terminated before finishing, you can use the same command with --resume to resume training.

Acknowledgement

The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

License

HPRNet is released under the MIT License (refer to the LICENSE file for details).

Citation

If you find HPRNet useful for your research, please cite our paper as follows:

N. Samet, E. Akbas, "HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation", arXiv, 2021.

BibTeX entry:

@misc{hprnet,
      title={HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation}, 
      author={Nermin Samet and Emre Akbas},
      year={2021}, 
}
Owner
Nermin Samet
PhD candidate
Nermin Samet
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
This is the implementation of the paper "Self-supervised Outdoor Scene Relighting"

Self-supervised Outdoor Scene Relighting This is the implementation of the paper "Self-supervised Outdoor Scene Relighting". The model is implemented

Ye Yu 24 Dec 17, 2022
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
Code accompanying our NeurIPS 2021 traffic4cast challenge

Traffic forecasting on traffic movie snippets This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the c

Nina Wiedemann 2 Aug 09, 2022
Python binding for Khiva library.

Khiva-Python Build Documentation Build Linux and Mac OS Build Windows Code Coverage README This is the Khiva Python binding, it allows the usage of Kh

Shapelets 46 Oct 16, 2022
Official implementation of "GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators" (NeurIPS 2020)

GS-WGAN This repository contains the implementation for GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially Private Generators (NeurIPS

46 Nov 09, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022