Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

Overview

IIC2233 - Programación Avanzada

Evaluación

  1. Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la nota del curso NC como:

    NC = 2/3 * T + 1/3 * AC

    Donde T es el promedio ponderado de las tareas y AC es el promedio de las actividades.

    El promedio ponderado de las tareas se calcula de la siguiente manera:

    T = ( 1xT0 + 2×T1 + 3×T2 + 3×T3 ) / 9

    El promedio de las actividades corresponderá a las 4 mejores notas entre actividades sumativas (son 4) y la nota de actividades formativas, que cuenta como una actividad sumativa más:

    AC = ((ACS1 + ACS2 + ACS3 + ACS4 + EF) - mínimo) / 4, dónde mínimo es la peor nota entre las cinco consideradas (ACS1, ACS2, ACS3, ACS4 y EF).

    La nota de actividades formativas AF toma en consideración la participación del estudiante como meta. Consta de cuatro instancias de actividades formativas, donde el trabajo del estudiante será revisado superficialmente y recibirá un puntaje de cumplimiento acorde: 0 (no logrado), 0,5 (medianamente logrado) y 1 (logrado).

    Se considerará la suma de cumplimientos (A) de las cuatro actividades donde el cálculo de EF es:

    EF = 6 x A / 4 + 1, donde A es la suma de cumplimientos en actividades formativas.

  2. Adicionalmente, para aprobar el curso el alumno debe cumplir con:

    • NC debe ser mayor o igual a 3,950
    • AC debe ser mayor o igual a 3,950
    • T debe ser mayor o igual a 3,950
  3. Este semestre el curso participará de la Encuesta de Carga Académica (ECA), con el objetivo de medir la carga que conlleva el curso y adaptarlo en esta y futuras versiones del curso.

    Para incentivar que a que los estudiantes la respondan, se entregará una bonificación que tendrá efecto en el promedio final del curso, siempre que se cumplan los criterios de aprobación nombrados en el punto anterior.

    Dependiendo de la cantidad de alumnos que responda la ECA cada semana, se podrá ganar:

    • 0,2 décimas: si el alumno responde la ECA y por lo menos el 80% del curso responde la encuesta esa semana.
    • 0,1 décimas: si el alumno responde la ECA y menos del 80% del curso responde la encuesta esa semana.
    • 0 décimas: en cualquier otro caso.

    En total se realizarán 15 encuestas, por lo que, si un estudiante responde todas las ECAs, tendrá una bonificación de 1,5 décimas en su promedio final (si cumple los criterios de aprobación).

  4. Si el alumno cumple con las condiciones nombradas en el punto 2, entonces NF = NC + Décimas ECA. En caso contrario, NF = min(3,9; NC)

  5. La inasistencia a alguna de las evaluaciones (actividades sumativas) se evalúa con nota 1,0.

  6. Solo será aproximada la nota final NF. El resto de las notas serán usadas con dos decimales.

  7. Las notas de todas las evaluaciónes se publicarán en esta planilla (link pendiente). Solo se puede acceder con cuenta UC, no se dará acceso a ninguna otra cuenta.

Recorrección

Para recorregir alguna evaluación, se publicará oportunamente un formulario en el que tendrán que exponer sus motivos.

No se aceptarán recorrecciones del tipo: "Creo que merezco más nota" sin que haya alguna justificación de por medio.

Entregas atrasadas

Deben contestar un formulario que se habilitará en el debido momento. Se recomienda revisar el documento de entregas atrasadas para más detalles.

Foro

La página de Issues se utilizará como foro para preguntas.

Semestres Anteriores

Puedes ver los syllabus de los semestres anteriores en:

Otros

Los contenidos, ayudantes, calendario, cuestionario de recorrecciones y material se encuentran en este link.

Owner
IIC2233 @ UC
IIC2233 Programación Avanzada @ Pontificia Universidad Católica de Chile
IIC2233 @ UC
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Detection"

M-LSD: Towards Light-weight and Real-time Line Segment Detection Pytorch implementation of "M-LSD: Towards Light-weight and Real-time Line Segment Det

123 Jan 04, 2023
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
Self-Supervised Learning with Kernel Dependence Maximization

Self-Supervised Learning with Kernel Dependence Maximization This is the code for SSL-HSIC, a self-supervised learning loss proposed in the paper Self

DeepMind 29 Dec 29, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering (NAACL 2021)

Designing a Minimal Retrieve-and-Read System for Open-Domain Question Answering Abstract In open-domain question answering (QA), retrieve-and-read mec

Clova AI Research 34 Apr 13, 2022
Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021 [Projec

Zhengqi Li 583 Dec 30, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
A solution to the 2D Ising model of ferromagnetism, implemented using the Metropolis algorithm

Solving the Ising model on a 2D lattice using the Metropolis Algorithm Introduction The Ising model is a simplified model of ferromagnetism, the pheno

Rohit Prabhu 5 Nov 13, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
House3D: A Rich and Realistic 3D Environment

House3D: A Rich and Realistic 3D Environment Yi Wu, Yuxin Wu, Georgia Gkioxari and Yuandong Tian House3D is a virtual 3D environment which consists of

Meta Research 1.1k Dec 14, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
Photo2cartoon - 人像卡通化探索项目 (photo-to-cartoon translation project)

人像卡通化 (Photo to Cartoon) 中文版 | English Version 该项目为小视科技卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“AI卡通秀”小程序体验卡通化效果。

Minivision_AI 3.5k Dec 30, 2022