Betafold - AlphaFold with tunings

Related tags

Deep Learningbetafold
Overview

alphafold.hegelab.org

BetaFold

We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer, v2.1.1) fork with changes that most likely will not be inserted in the main repository, but we found these modifications very useful during our daily work. We plan to try to push these changes gradually to main repo via our alphafold fork.

Warning

  • Currently, this is a no-Docker version. If you really need our functionalities inside a Docker Image, let us know.
  • Earlier opction for the configuration file was -c, now it is -C.

Changes / Features

  • It is called BetaFold, since there might be some minor bugs – we provide this code “as is”.
  • This fork includes the correction of memory issues from our alphafold fork (listed below).
  • The changes mostly affect the workflow logic.
  • BetaFold run can be influence via configuration files.
  • Different steps of AF2 runs (generating features; running models; performing relaxation) can be separated. Thus database searches can run on a CPU node, while model running can be performed on a GPU node. Note: timings.json file is overwritten upon consecutive partial runs – save it if you need it.

Configuration file

  • You can provide the configuration file as: ‘run_alphafold.sh ARGUMENTS -C CONF_FILENAME’ (slightly modified version of the bash script from AlfaFold without docker @ kalininalab; please see below our Requirement section)
  • If no configuration file or no section or no option is provided, everything is expected to run everything with the original default parameters.
[steps]
get_features = true
run_models = true
run_relax = true

[relax]
top

Requirements

Paper/Reference/Citation

Till we publish a methodological paper, please read and cite our preprint "AlphaFold2 transmembrane protein structure prediction shines".

Memory issues you may encounter when running original AlphaFold locally

"Out of Memory"

This is expected to be included in the next AF2 release, see: pull request #296.

Brief, somewhat outdated summary: Some of our AF2 runs with short sequences (~250 a.a.) consumed all of our memory (96GB) and died. Our targets in these cases were highly conserved and produced a very large alignment file, which is read into the memory by a simple .read() in alphafold/data/tools/jackhmmer.py _query_chunk. Importantly, the max_hit limit is applied at a later step to the full set, which resides already in the memory, so this option does not prevent this error.

  • To overcome this issue exhausting the system RAM, we read the .sto file line-by-line, so only max_hit will reach the memory.
  • Since the same data needed line-by-line for a3m conversion, we merged the two step together. We inserted to functions into alphafold/data/parsers.py: get_sto if only sto is needed and get_sto_a3m if also a3m is needed (the code is somewhat redundant but simple and clean).
  • This issue was caused by jackhmmer_uniref90_runner.query and jackhmmer_mgnify_runner.query, so we modified the calls to this function in alphafold/data/pipeline.py.
  • The called query in alphafold/data/tools/jackhmmer.py calls _query_chunk; from here we call our get_sto*; _query_chunk returns the raw_output dictionary, which also includes 'a3m' as a string or None.

License and Disclaimer

Please see the original.

Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis

Validated, scalable, community developed variant calling, RNA-seq and small RNA analysis. You write a high level configuration file specifying your in

Blue Collar Bioinformatics 917 Jan 03, 2023
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Code for the paper: Fighting Fake News: Image Splice Detection via Learned Self-Consistency

Fighting Fake News: Image Splice Detection via Learned Self-Consistency [paper] [website] Minyoung Huh *12, Andrew Liu *1, Andrew Owens1, Alexei A. Ef

minyoung huh (jacob) 174 Dec 09, 2022
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
Official repository of OFA. Paper: Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework

Paper | Blog OFA is a unified multimodal pretrained model that unifies modalities (i.e., cross-modality, vision, language) and tasks (e.g., image gene

OFA Sys 1.4k Jan 08, 2023
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
Code for IntraQ, PyTorch implementation of our paper under review

IntraQ: Learning Synthetic Images with Intra-Class Heterogeneity for Zero-Shot Network Quantization paper Requirements Python = 3.7.10 Pytorch == 1.7

1 Nov 19, 2021
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
Malware Env for OpenAI Gym

Malware Env for OpenAI Gym Citing If you use this code in a publication please cite the following paper: Hyrum S. Anderson, Anant Kharkar, Bobby Fila

ENDGAME 563 Dec 29, 2022
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
Instance-based label smoothing for improving deep neural networks generalization and calibration

Instance-based Label Smoothing for Neural Networks Pytorch Implementation of the algorithm. This repository includes a new proposed method for instanc

Mohamed Maher 1 Aug 13, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022