ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

Overview

ClevrTex

This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

Requirements

The follwing preparation steps are required to generate the dataset.

  1. Setting up blender
  2. Setting up python
  3. Setting up textures and materials

Blender

We used blender 2.92.3 for rendering. Newer versions are untested but should work at least up to a minor bump. One might download it from Blender website and follow installation instructions process as normal then skip to the final step. Or simply execute this (will set up blender in /usr/local/blender):

mkdir /usr/local/blender && \
curl -SL "http://mirror.cs.umn.edu/blender.org/release/Blender2.92/blender-2.92.0-linux64.tar.xz" -o blender.tar.xz && \
tar -xvf blender.tar.xz -C /usr/local/blender --strip-components=1 && \
rm blender.tar.xz && ln -s /usr/local/blender/blender /usr/local/bin/blender

Since we use "system interpreter" (see intructions bellow to set up a compatible one) for Blender headless mode, remove python that comes pre-packaged.

rm -rf /usr/local/blender/2.92/python

Python

One needs to set up python with required libraries and with correct version. Blender uses python 3.7 (older or newer version will not work). For simplicty, use conda:

conda env create -f env.yaml

When invoking Blender use (assumes the appropriate env was named p37) :

PYTHONPATH=~/miniconda3/envs/p37/bin/python \
PYTHONHOME=~/miniconda3/envs/p37 \
blender --background --python-use-system-env --python generate.py -- <args>

Textures

The final piece is to set up source assets for rendering, namely the materials. Briefly, the textures used to create the materials are copyrighted by Poliigon Pty Ltd. Textures used in the ClevrTex dataset are freely availble (at the time of writing) and should be downloaded from www.poliigon.com (download metalness workflow for matalics). Please check MATERIALS.md for full list.

Download appropriate textures and place them into data/materials/textures and data/outd_materials/textures. Note, the textures should be in the directory not in subfolders. We include .blend files for materials which have been stripped of the original textures (due to licensing restrictions) but contain the settings adjustments made. Skip the following instructions if working with existing .blend files.

To add new materials:

The following process needs to be applied for each new material. Consider using addon provided by Poliigon.

  1. Import materials textures as per addon's instructions.
  2. Open the material in question in node editor in Blender.
  3. Create a new node group of all nodes except the output node (yes this will nest the groups, it is intentional). We rely on the trick identified by Johnson et al. in the original CLEVR script where Blender seems to copy-by-value node trees, which makes it trivial to create duplicate materials in the scene.
  4. Connect any inputs of interest to the group inputs. Crucially, check that Scale and Displacement Strength are available as inputs. The sampling script will pass these in to ensure that background/objects have correct scale adjustements to ensure level of details does not disappear between small objects and large background. Check that outputs have been connected to Shader output nodes (should have happended automatically).
  5. Ensure that the materials look good with other parameters. Consider including additional logic nodes to e.g. scaling, and displacement parameters. Materials have Random \in [0, 1] number passed to them as input (if available), if one needs to randomise aspects of the material.
    • (Optional) Render the materials to see how they would look in the output. Repeat until desired look is acheived.
  6. Ensure the node group is named identically to the material and then save it as your-node-group-name.blend.

This is unfortunatelly a manual process to ensure all textures look good that usually involves several test render per texture.

Debugging textures

To ensure the textures are found and look good, consider trying with a single texture first (to save time). To scan for errors and see how the end result might look like, consider using --test_scan option in the generation script.* In addition, consider --blendfiles option to save blender scene after rendering for manual inspection.

Generating

To generate the dataset run the following (will produce a LOCAL_debug_000001.png example):

cd clevrtex-gen
 ./local_test.bash

Otherwise, please see arguments available to customise the rendering. Dataset variants can be recreated using appropriate .json files.

Using ClevrTex

See project page for download links for CLEVRTEX. clevrtex_eval.py file contains dataloading logic to for convenient access to CLEVRTEX data. Consider

from clevrtex_eval import CLEVRTEX, collate_fn

clevrtex = CLEVRTEX(
    'path-to-downloaded-data', # Untar'ed
    dataset_variant='full', # 'full' for main CLEVRTEX, 'outd' for OOD, 'pbg','vbg','grassbg','camo' for variants.
    split='train',
    crop=True,
    resize=(128, 128),
    return_metadata=True # Useful only for evaluation, wastes time on I/O otherwise 
)
# Use collate_fn to handle metadata batching
dataloader = torch.utils.data.DataLoader(clevrtex, batch_size=BATCH, shuffle=True, collate_fn=collate_fn)

Evaluation

See CLEVRTEX_Evaluator in clevrtex_eval.py. It implements all the utilities needed.

CLEVR

This dataset builds upon CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning
Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Fei-Fei Li, Larry Zitnick, Ross Girshick
presented at CVPR 2017, code available at https://github.com/facebookresearch/clevr-dataset-gen

In particular we use a method for computing cardinal directions from CLEVR. See the original licence included in the clevr_qa.py file.

BibTeX

If you use ClevrTex dataset or generation code consider citing:

BiBTeX coming soon...
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
Using some basic methods to show linkages and transformations of robotic arms

roboticArmVisualizer Python GUI application to create custom linkages and adjust joint angles. In the future, I plan to add 2d inverse kinematics solv

Sandesh Banskota 1 Nov 19, 2021
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes

Naive-Bayes Predict Breast Cancer Wisconsin (Diagnostic) using Naive Bayes Downloading Data Set Use our Breast Cancer Wisconsin Data Set Also you can

Faeze Habibi 0 Apr 06, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationships.

Auto-Lambda This repository contains the source code of Auto-Lambda and baselines from the paper, Auto-Lambda: Disentangling Dynamic Task Relationship

Shikun Liu 76 Dec 20, 2022