Machine Learning in Asset Management (by @firmai)

Overview

Machine Learning in Asset Management

If you like this type of content then visit ML Quant site below:

https://www.ml-quant.com/


Part One

Follow this link for SSRN paper.

If you feel like citing something you can use:

Snow, D (2020). Machine Learning in Asset Management—Part 1: Portfolio Construction—Trading Strategies. The Journal of Financial Data Science, Winter 2020, 2 (1) 10-23.

This is the first in a series of articles dealing with machine learning in asset management. Asset management can be broken into the following tasks: (1) portfolio construction, (2) risk management, (3) capital management, (4) infrastructure and deployment, and (5) sales and marketing. This article focuses on portfolio construction using machine learning. Historically, algorithmic trading could be more narrowly defined as the automation of sell-side trade execution, but since the introduction of more advanced algorithms, the definition has grown to include idea generation, alpha factor design, asset allocation, position sizing, and the testing of strategies. Machine learning, from the vantage of a decision-making tool, can help in all these areas.

Editors: Frank J. Fabozzi | Marcos Lopéz de Prado | Joseph Simonian

This paper investigates various machine learning trading and portfolio optimisation models and techniques. The notebooks to this paper are Python based. By last count there are about 15 distinct trading varieties and around 100 trading strategies. Code and data are made available where appropriate. The hope is that this paper will organically grow with future developments in machine learning and data processing techniques. All feedback, contributions and criticisms are highly encouraged. You can find my contact details on the website, FirmAI.

Trading Strategies


1. Tiny CTA
Resources:
See this paper and blog for further explanation.
Data, Code


2. Tiny RL
Resources:
See this paper and/or blog for further explanation.
Data, Code


3. Tiny VIX CMF
Resources:
Data, Code


4. Quantamental
Resources:
Web-scrapers, Data, Code, Interactive Report, Paper.


5. Earnings Surprise
Resources:
Code, Paper


6. Bankruptcy Prediction
Resources:
Data, Code, Paper


7. Filing Outcomes
Resources:
Data


8. Credit Rating Arbitrage
Resources:
Code


9. Factor Investing:
Resources:
Paper, Code, Data


10. Systematic Global Macro
Resources:
Data, Code


11. Mixture Models
Resources:
Data, Code


12. Evolutionary
Resources:
Code, Repo


13. Agent Strategy
Resources:
Code, Repo


14. Stacked Trading
Resources:
Code, Blog


15. Deep Trading
Resources:
Code, Repo


Part Two:

Snow, D (2020). Machine Learning in Asset Management—Part 2: Portfolio Construction—Weight Optimization. The Journal of Financial Data Science, Spring 2020, 2 (1) 10-23.

This is the second in a series of articles dealing with machine learning in asset management. This article focuses on portfolio weighting using machine learning. Following from the previous article (Snow 2020), which looked at trading strategies, this article identifies different weight optimization methods for supervised, unsupervised, and reinforcement learning frameworks. In total, seven submethods are summarized with the code made available for further exploration.

Weight Optimisation (JFDS)


1. Deep Portfolio
Resources:
Data, Code, Paper


2. Linear Regression
Resources:
Code, Paper


3. Bayesian Sentiment
Resources:
Code


4. PCA and Hierarchical
Resource:
Code


5. HRP
Resources:
Data, Code


6. Network Graph
Resources:
Code


7. RL Deep Deterministic
Resources:
Code

Weight Optimisation (SSRN)


1. Online Portfolio Selection (OLPS)
Resources:
Code

Other (SSRN)


1. GANVaR
Resources:
Code


All Data and Code


Top 1% SSRN paper downloads

All Time Top 10 Paper :

Applied Computing eJournal, CompSciRN: Algorithms, CompSciRN: Clustering, Banking & Financial Institutions eJournals, CompSciRN: Artificial Intelligence, Econometric Modeling: Capital Markets - Portfolio Theory eJournal, Machine Learning eJournal

Other Projects

Other FirmAI projects include AtsPy automating Python's best time series models, PandaPy a data structure solutions that has the speed of NumPy and the usability of Pandas (10x to 50x faster), FairPut a holistic approach to implement fair machine learning outputs at the individual and group level, PandasVault a package for advanced pandas functions and code snippets, and ICR an interactive and fully automated corporate report built with Python.

This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
CAR-API: Cityscapes Attributes Recognition API

CAR-API: Cityscapes Attributes Recognition API This is the official api to download and fetch attributes annotations for Cityscapes Dataset. Content I

Kareem Metwaly 5 Dec 22, 2022
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

Implementation EfficientDet: Scalable and Efficient Object Detection in PyTorch

tonne 1.4k Dec 29, 2022
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Nicolas Girard 186 Jan 04, 2023
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
Repository for the Bias Benchmark for QA dataset.

BBQ Repository for the Bias Benchmark for QA dataset. Authors: Alicia Parrish, Angelica Chen, Nikita Nangia, Vishakh Padmakumar, Jason Phang, Jana Tho

ML² AT CILVR 18 Nov 18, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021