Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

Overview

CaiT-TF (Going deeper with Image Transformers)

TensorFlow 2.8 HugginFace badge Models on TF-Hub

This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron et al. It also provides the TensorFlow / Keras models that have been populated with the original CaiT pre-trained params available from [2]. These models are not blackbox SavedModels i.e., they can be fully expanded into tf.keras.Model objects and one can call all the utility functions on them (example: .summary()).

As of today, all the TensorFlow / Keras variants of the CaiT models listed here are available in this repository.

Refer to the "Using the models" section to get started.

Table of contents

Conversion

TensorFlow / Keras implementations are available in cait/models.py. Conversion utilities are in convert.py.

Models

Find the models on TF-Hub here: https://tfhub.dev/sayakpaul/collections/cait/1. You can fully inspect the architecture of the TF-Hub models like so:

import tensorflow as tf

model_gcs_path = "gs://tfhub-modules/sayakpaul/cait_xxs24_224/1/uncompressed"
model = tf.keras.models.load_model(model_gcs_path)

dummy_inputs = tf.ones((2, 224, 224, 3))
_ = model(dummy_inputs)
print(model.summary(expand_nested=True))

Results

Results are on ImageNet-1k validation set (top-1 and top-5 accuracies).

model_name top1_acc(%) top5_acc(%)
cait_s24_224 83.368 96.576
cait_xxs24_224 78.524 94.212
cait_xxs36_224 79.76 94.876
cait_xxs36_384 81.976 96.064
cait_xxs24_384 80.648 95.516
cait_xs24_384 83.738 96.756
cait_s24_384 84.944 97.212
cait_s36_384 85.192 97.372
cait_m36_384 85.924 97.598
cait_m48_448 86.066 97.590

Results can be verified with the code in i1k_eval. Results are in line with [1]. Slight differences in the results stemmed from the fact that I used a different set of augmentation transformations. Original transformations suggested by the authors can be found here.

Using the models

Pre-trained models:

These models also output attention weights from each of the Transformer blocks. Refer to this notebook for more details. Additionally, the notebook shows how to visualize the attention maps for a given image (following figures 6 and 7 of the original paper).

Original Image Class Attention Maps Class Saliency Map
cropped image cls attn saliency

For the best quality, refer to the assets directory. You can also generate these plots using the following interactive demos on Hugging Face Spaces:

Randomly initialized models:

from cait.model_configs import base_config
from cait.models import CaiT
import tensorflow as tf
 
config = base_config.get_config(
    model_name="cait_xxs24_224"
)
cait_xxs24_224 = CaiT(config)

dummy_inputs = tf.ones((2, 224, 224, 3))
_ = cait_xxs24_224(dummy_inputs)
print(cait_xxs24_224.summary(expand_nested=True))

To initialize a network with say, 5 classes, do:

config = base_config.get_config(
    model_name="cait_xxs24_224"
)
with config.unlocked():
    config.num_classes = 5
cait_xxs24_224 = CaiT(config)

To view different model configurations, refer to convert_all_models.py.

References

[1] CaiT paper: https://arxiv.org/abs/2103.17239

[2] Official CaiT code: https://github.com/facebookresearch/deit

Acknowledgements

Owner
Sayak Paul
ML Engineer at @carted | One PR at a time
Sayak Paul
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
MLP-Numpy - A simple modular implementation of Multi Layer Perceptron in pure Numpy.

MLP-Numpy A simple modular implementation of Multi Layer Perceptron in pure Numpy. I used the Iris dataset from scikit-learn library for the experimen

Soroush Omranpour 1 Jan 01, 2022
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Source code for Task-Aware Variational Adversarial Active Learning

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

27 Nov 23, 2022
Class-Attentive Diffusion Network for Semi-Supervised Classification [AAAI'21] (official implementation)

Class-Attentive Diffusion Network for Semi-Supervised Classification Official Implementation of AAAI 2021 paper Class-Attentive Diffusion Network for

Jongin Lim 7 Sep 20, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
Code for paper: "Spinning Language Models for Propaganda-As-A-Service"

Spinning Language Models for Propaganda-As-A-Service This is the source code for the Arxiv version of the paper. You can use this Google Colab to expl

Eugene Bagdasaryan 16 Jan 03, 2023
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
It is modified Tensorflow 2.x version of Mask R-CNN

[TF 2.X] Mask R-CNN for Object Detection and Segmentation [Notice] : The original mask-rcnn uses the tensorflow 1.X version. I modified it for tensorf

Milner 34 Nov 09, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023