A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

Overview

DGC-Net: Dense Geometric Correspondence Network

This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network"

TL;DR A CNN-based approach to obtain dense pixel correspondences between two views.

License

Shield: CC BY-NC-SA 4.0

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, available only for non-commercial use.

CC BY-NC-SA 4.0

Installation

  • create and activate conda environment with Python 3.x
conda create -n my_fancy_env python=3.7
source activate my_fancy_env
  • install Pytorch v1.0.0 and torchvision library
pip install torch torchvision
  • install all dependencies by running the following command:
pip install -r requirements.txt

Getting started

  • eval.py demonstrates the results on the HPatches dataset To be able to run eval.py script:

    • Download an archive with pre-trained models click and extract it to the project folder
    • Download HPatches dataset (Full image sequences). The dataset is available here at the end of the page
    • Run the following command:
    python eval.py --image-data-path /path/to/hpatches-geometry
    
  • train.py is a script to train DGC-Net/DGCM-Net model from scratch. To run this script, please follow the next procedure:

    python train.py --image-data-path /path/to/TokyoTimeMachine
    

Performance on HPatches dataset

Method / HPatches ID Viewpoint 1 Viewpoint 2 Viewpoint 3 Viewpoint 4 Viewpoint 5
PWC-Net 4.43 11.44 15.47 20.17 28.30
GM best model 9.59 18.55 21.15 27.83 35.19
DGC-Net (paper) 1.55 5.53 8.98 11.66 16.70
DGCM-Net (paper) 2.97 6.85 9.95 12.87 19.13
DGC-Net (repo) 1.74 5.88 9.07 12.14 16.50
DGCM-Net (repo) 2.33 5.62 9.55 11.59 16.48

Note: There is a difference in numbers presented in the original paper and obtained by the models of this repo. It might be related to the fact that both models (DGC-Net and DGCM-Net) have been trained using Pytorch v0.3.

More qualitative results are presented on the project page

How to cite

If you use this software in your own research, please cite our publication:

@inproceedings{Melekhov+Tiulpin+Sattler+Pollefeys+Rahtu+Kannala:2018,
      title = {{DGC-Net}: Dense geometric correspondence network},
      author = {Melekhov, Iaroslav and Tiulpin, Aleksei and 
               Sattler, Torsten, and 
               Pollefeys, Marc and 
               Rahtu, Esa and Kannala, Juho},
       year = {2019},
       booktitle = {Proceedings of the IEEE Winter Conference on 
                    Applications of Computer Vision (WACV)}
}
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
Code for "Hierarchical Skills for Efficient Exploration" HSD-3 Algorithm and Baselines

Hierarchical Skills for Efficient Exploration This is the source code release for the paper Hierarchical Skills for Efficient Exploration. It contains

Facebook Research 38 Dec 06, 2022
This repo contains the code required to train the multivariate time-series Transformer.

Multi-Variate Time-Series Transformer This repo contains the code required to train the multivariate time-series Transformer. Download the data The No

Gregory Duthé 4 Nov 24, 2022
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022