A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

Overview

DGC-Net: Dense Geometric Correspondence Network

This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network"

TL;DR A CNN-based approach to obtain dense pixel correspondences between two views.

License

Shield: CC BY-NC-SA 4.0

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, available only for non-commercial use.

CC BY-NC-SA 4.0

Installation

  • create and activate conda environment with Python 3.x
conda create -n my_fancy_env python=3.7
source activate my_fancy_env
  • install Pytorch v1.0.0 and torchvision library
pip install torch torchvision
  • install all dependencies by running the following command:
pip install -r requirements.txt

Getting started

  • eval.py demonstrates the results on the HPatches dataset To be able to run eval.py script:

    • Download an archive with pre-trained models click and extract it to the project folder
    • Download HPatches dataset (Full image sequences). The dataset is available here at the end of the page
    • Run the following command:
    python eval.py --image-data-path /path/to/hpatches-geometry
    
  • train.py is a script to train DGC-Net/DGCM-Net model from scratch. To run this script, please follow the next procedure:

    python train.py --image-data-path /path/to/TokyoTimeMachine
    

Performance on HPatches dataset

Method / HPatches ID Viewpoint 1 Viewpoint 2 Viewpoint 3 Viewpoint 4 Viewpoint 5
PWC-Net 4.43 11.44 15.47 20.17 28.30
GM best model 9.59 18.55 21.15 27.83 35.19
DGC-Net (paper) 1.55 5.53 8.98 11.66 16.70
DGCM-Net (paper) 2.97 6.85 9.95 12.87 19.13
DGC-Net (repo) 1.74 5.88 9.07 12.14 16.50
DGCM-Net (repo) 2.33 5.62 9.55 11.59 16.48

Note: There is a difference in numbers presented in the original paper and obtained by the models of this repo. It might be related to the fact that both models (DGC-Net and DGCM-Net) have been trained using Pytorch v0.3.

More qualitative results are presented on the project page

How to cite

If you use this software in your own research, please cite our publication:

@inproceedings{Melekhov+Tiulpin+Sattler+Pollefeys+Rahtu+Kannala:2018,
      title = {{DGC-Net}: Dense geometric correspondence network},
      author = {Melekhov, Iaroslav and Tiulpin, Aleksei and 
               Sattler, Torsten, and 
               Pollefeys, Marc and 
               Rahtu, Esa and Kannala, Juho},
       year = {2019},
       booktitle = {Proceedings of the IEEE Winter Conference on 
                    Applications of Computer Vision (WACV)}
}
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

Utku Ozbulak 53 Jul 04, 2022
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug · Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform some analysis,,

Virtual-Artificial-Intelligence-genesis- I created My own Virtual Artificial Intelligence named genesis, He can assist with my Tasks and also perform

AKASH M 1 Nov 05, 2021
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022