FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

Overview

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

This repository contains the code (in PyTorch) for the "FADNet++" paper.

Contents

  1. Introduction
  2. Usage
  3. Results
  4. Acknowledgement
  5. Contacts

Introduction

We propose an efficient and accurate deep network for disparity estimation named FADNet with three main features:

  • It exploits efficient 2D based correlation layers with stacked blocks to preserve fast computation.
  • It combines the residual structures to make the deeper model easier to learn.
  • It contains multi-scale predictions so as to exploit a multi-scale weight scheduling training technique to improve the accuracy.

Usage

Dependencies

Package Installation

  • Execute "sh compile.sh" to compile libraries needed by GANet.
  • Enter "layers_package" and execute "sh install.sh" to install customized layers, including Channel Normalization layer and Resample layer.

We also release the docker version of this project, which has been configured completely and can be used directly. Please refer to this website for the image.

Usage of Scene Flow dataset
Download RGB cleanpass images and its disparity for three subset: FlyingThings3D, Driving, and Monkaa. Organize them as follows:
- FlyingThings3D_release/frames_cleanpass
- FlyingThings3D_release/disparity
- driving_release/frames_cleanpass
- driving_release/disparity
- monkaa_release/frames_cleanpass
- monkaa_release/disparity
Put them in the data/ folder (or soft link). The *train.sh* defaultly locates the data root path as data/.

Train

We use template scripts to configure the training task, which are stored in exp_configs. One sample "fadnet.conf" is as follows:

net=fadnet
loss=loss_configs/fadnet_sceneflow.json
outf_model=models/${net}-sceneflow
logf=logs/${net}-sceneflow.log

lr=1e-4
devices=0,1,2,3
dataset=sceneflow
trainlist=lists/SceneFlow.list
vallist=lists/FlyingThings3D_release_TEST.list
startR=0
startE=0
batchSize=16
maxdisp=-1
model=none
#model=fadnet_sceneflow.pth
Parameter Description Options
net network architecture name dispnets, dispnetc, dispnetcss, fadnet, psmnet, ganet
loss loss weight scheduling configuration file depends on the training scheme
outf_model folder name to store the model files \
logf log file name \
lr initial learning rate \
devices GPU device IDs to use depends on the hardware system
dataset dataset name to train sceneflow
train(val)list sample lists for training/validation \
startR the round index to start training (for restarting training from the checkpoint) \
startE the epoch index to start training (for restarting training from the checkpoint) \
batchSize the number of samples per batch \
maxdisp the maximum disparity that the model tries to predict \
model the model file path of the checkpoint \

We have integrated PSMNet and GANet for comparison. The sample configuration files are also given.

To start training, use the following command, dnn=CONFIG_FILE sh train.sh, such as:

dnn=fadnet sh train.sh

You do not need the suffix for CONFIG_FILE.

Evaluation

We have two modes for performance evaluation, test and detect, respectively. test requires that the testing samples should have ground truth of disparity and then reports the average End-point-error (EPE). detect does not require any ground truth for EPE computation. However, detect stores the disparity maps for each sample in the given list.

For the test mode, one can revise test.sh and run sh test.sh. The contents of test.sh are as follows:

net=fadnet
maxdisp=-1
dataset=sceneflow
trainlist=lists/SceneFlow.list
vallist=lists/FlyingThings3D_release_TEST.list

loss=loss_configs/test.json
outf_model=models/test/
logf=logs/${net}_test_on_${dataset}.log

lr=1e-4
devices=0,1,2,3
startR=0
startE=0
batchSize=8
model=models/fadnet.pth
python main.py --cuda --net $net --loss $loss --lr $lr \
               --outf $outf_model --logFile $logf \
               --devices $devices --batch_size $batchSize \
               --trainlist $trainlist --vallist $vallist \
               --dataset $dataset --maxdisp $maxdisp \
               --startRound $startR --startEpoch $startE \
               --model $model 

Most of the parameters in test.sh are similar to training. However, you can just ignore parameters, including trainlist, loss, outf_model, since they are not used in the test mode.

For the detect mode, one can revise detect.sh and run sh detect.sh. The contents of detect.sh are as follows:

net=fadnet
dataset=sceneflow

model=models/fadnet.pth
outf=detect_results/${net}-${dataset}/

filelist=lists/FlyingThings3D_release_TEST.list
filepath=data

CUDA_VISIBLE_DEVICES=0 python detecter.py --model $model --rp $outf --filelist $filelist --filepath $filepath --devices 0 --net ${net} 

You can revise the value of outf to change the folder that stores the predicted disparity maps.

Finetuning on KITTI datasets and result submission

We re-use the codes in PSMNet to finetune the pretrained models on KITTI datasets and generate disparity maps for submission. Use finetune.sh and submission.sh to do them respectively.

Pretrained Model

Update: 2020/2/6 We released the pre-trained Scene Flow model.

KITTI 2015 Scene Flow KITTI 2012
/ Google Drive /

Results

Results on Scene Flow dataset

Model EPE GPU Memory during inference (GB) Runtime (ms) on Tesla V100
FADNet 0.83 3.87 48.1
DispNetC 1.68 1.62 18.7
PSMNet 1.09 13.99 399.3
GANet 0.84 29.1 2251.1

Citation

If you find the code and paper is useful in your work, please cite our conference paper

@inproceedings{wang2020fadnet,
  title={{FADNet}: A Fast and Accurate Network for Disparity Estimation},
  author={Wang, Qiang and Shi, Shaohuai and Zheng, Shizhen and Zhao, Kaiyong and Chu, Xiaowen},
  booktitle={2020 {IEEE} International Conference on Robotics and Automation ({ICRA} 2020)},
  pages={101--107},
  year={2020}
}

Acknowledgement

We acknowledge the following repositories and papers since our project has used some codes of them.

Contacts

[email protected]

Any discussions or concerns are welcomed!

Owner
HKBU High Performance Machine Learning Lab
HKBU High Performance Machine Learning Lab
LWCC: A LightWeight Crowd Counting library for Python that includes several pretrained state-of-the-art models.

LWCC: A LightWeight Crowd Counting library for Python LWCC is a lightweight crowd counting framework for Python. It wraps four state-of-the-art models

Matija Teršek 39 Dec 28, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
A Joint Video and Image Encoder for End-to-End Retrieval

Frozen️ in Time ❄️ ️️️️ ⏳ A Joint Video and Image Encoder for End-to-End Retrieval project page | arXiv | webvid-data Repository containing the code,

225 Dec 25, 2022
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
OpenMMLab 3D Human Parametric Model Toolbox and Benchmark

Introduction English | 简体中文 MMHuman3D is an open source PyTorch-based codebase for the use of 3D human parametric models in computer vision and comput

OpenMMLab 782 Jan 04, 2023
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
Python版OpenCVのTracking APIのサンプルです。DaSiamRPNアルゴリズムまで対応しています。

OpenCV-Object-Tracker-Sample Python版OpenCVのTracking APIのサンプルです。   Requirement opencv-contrib-python 4.5.3.56 or later Algorithm 2021/07/16時点でOpenCVには以

KazuhitoTakahashi 36 Jan 01, 2023
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022