FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

Overview

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

This repository contains the code (in PyTorch) for the "FADNet++" paper.

Contents

  1. Introduction
  2. Usage
  3. Results
  4. Acknowledgement
  5. Contacts

Introduction

We propose an efficient and accurate deep network for disparity estimation named FADNet with three main features:

  • It exploits efficient 2D based correlation layers with stacked blocks to preserve fast computation.
  • It combines the residual structures to make the deeper model easier to learn.
  • It contains multi-scale predictions so as to exploit a multi-scale weight scheduling training technique to improve the accuracy.

Usage

Dependencies

Package Installation

  • Execute "sh compile.sh" to compile libraries needed by GANet.
  • Enter "layers_package" and execute "sh install.sh" to install customized layers, including Channel Normalization layer and Resample layer.

We also release the docker version of this project, which has been configured completely and can be used directly. Please refer to this website for the image.

Usage of Scene Flow dataset
Download RGB cleanpass images and its disparity for three subset: FlyingThings3D, Driving, and Monkaa. Organize them as follows:
- FlyingThings3D_release/frames_cleanpass
- FlyingThings3D_release/disparity
- driving_release/frames_cleanpass
- driving_release/disparity
- monkaa_release/frames_cleanpass
- monkaa_release/disparity
Put them in the data/ folder (or soft link). The *train.sh* defaultly locates the data root path as data/.

Train

We use template scripts to configure the training task, which are stored in exp_configs. One sample "fadnet.conf" is as follows:

net=fadnet
loss=loss_configs/fadnet_sceneflow.json
outf_model=models/${net}-sceneflow
logf=logs/${net}-sceneflow.log

lr=1e-4
devices=0,1,2,3
dataset=sceneflow
trainlist=lists/SceneFlow.list
vallist=lists/FlyingThings3D_release_TEST.list
startR=0
startE=0
batchSize=16
maxdisp=-1
model=none
#model=fadnet_sceneflow.pth
Parameter Description Options
net network architecture name dispnets, dispnetc, dispnetcss, fadnet, psmnet, ganet
loss loss weight scheduling configuration file depends on the training scheme
outf_model folder name to store the model files \
logf log file name \
lr initial learning rate \
devices GPU device IDs to use depends on the hardware system
dataset dataset name to train sceneflow
train(val)list sample lists for training/validation \
startR the round index to start training (for restarting training from the checkpoint) \
startE the epoch index to start training (for restarting training from the checkpoint) \
batchSize the number of samples per batch \
maxdisp the maximum disparity that the model tries to predict \
model the model file path of the checkpoint \

We have integrated PSMNet and GANet for comparison. The sample configuration files are also given.

To start training, use the following command, dnn=CONFIG_FILE sh train.sh, such as:

dnn=fadnet sh train.sh

You do not need the suffix for CONFIG_FILE.

Evaluation

We have two modes for performance evaluation, test and detect, respectively. test requires that the testing samples should have ground truth of disparity and then reports the average End-point-error (EPE). detect does not require any ground truth for EPE computation. However, detect stores the disparity maps for each sample in the given list.

For the test mode, one can revise test.sh and run sh test.sh. The contents of test.sh are as follows:

net=fadnet
maxdisp=-1
dataset=sceneflow
trainlist=lists/SceneFlow.list
vallist=lists/FlyingThings3D_release_TEST.list

loss=loss_configs/test.json
outf_model=models/test/
logf=logs/${net}_test_on_${dataset}.log

lr=1e-4
devices=0,1,2,3
startR=0
startE=0
batchSize=8
model=models/fadnet.pth
python main.py --cuda --net $net --loss $loss --lr $lr \
               --outf $outf_model --logFile $logf \
               --devices $devices --batch_size $batchSize \
               --trainlist $trainlist --vallist $vallist \
               --dataset $dataset --maxdisp $maxdisp \
               --startRound $startR --startEpoch $startE \
               --model $model 

Most of the parameters in test.sh are similar to training. However, you can just ignore parameters, including trainlist, loss, outf_model, since they are not used in the test mode.

For the detect mode, one can revise detect.sh and run sh detect.sh. The contents of detect.sh are as follows:

net=fadnet
dataset=sceneflow

model=models/fadnet.pth
outf=detect_results/${net}-${dataset}/

filelist=lists/FlyingThings3D_release_TEST.list
filepath=data

CUDA_VISIBLE_DEVICES=0 python detecter.py --model $model --rp $outf --filelist $filelist --filepath $filepath --devices 0 --net ${net} 

You can revise the value of outf to change the folder that stores the predicted disparity maps.

Finetuning on KITTI datasets and result submission

We re-use the codes in PSMNet to finetune the pretrained models on KITTI datasets and generate disparity maps for submission. Use finetune.sh and submission.sh to do them respectively.

Pretrained Model

Update: 2020/2/6 We released the pre-trained Scene Flow model.

KITTI 2015 Scene Flow KITTI 2012
/ Google Drive /

Results

Results on Scene Flow dataset

Model EPE GPU Memory during inference (GB) Runtime (ms) on Tesla V100
FADNet 0.83 3.87 48.1
DispNetC 1.68 1.62 18.7
PSMNet 1.09 13.99 399.3
GANet 0.84 29.1 2251.1

Citation

If you find the code and paper is useful in your work, please cite our conference paper

@inproceedings{wang2020fadnet,
  title={{FADNet}: A Fast and Accurate Network for Disparity Estimation},
  author={Wang, Qiang and Shi, Shaohuai and Zheng, Shizhen and Zhao, Kaiyong and Chu, Xiaowen},
  booktitle={2020 {IEEE} International Conference on Robotics and Automation ({ICRA} 2020)},
  pages={101--107},
  year={2020}
}

Acknowledgement

We acknowledge the following repositories and papers since our project has used some codes of them.

Contacts

[email protected]

Any discussions or concerns are welcomed!

Owner
HKBU High Performance Machine Learning Lab
HKBU High Performance Machine Learning Lab
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
3D Generative Adversarial Network

Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling This repository contains pre-trained models and sampling

Chengkai Zhang 791 Dec 20, 2022
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023