The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

Related tags

Deep LearningPRIMER
Overview

PRIMER

The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization.

PRIMER is a pre-trained model for multi-document representation with focus on summarization that reduces the need for dataset-specific architectures and large amounts of fine-tuning labeled data. With extensive experiments on 6 multi-document summarization datasets from 3 different domains on the zero-shot, few-shot and full-supervised settings, PRIMER outperforms current state-of-the-art models on most of these settings with large margins.

Set up

  1. Create new virtual environment by
conda create --name primer python=3.7
conda activate primer
conda install cudatoolkit=10.0
  1. Install Longformer by
pip install git+https://github.com/allenai/longformer.git
  1. Install requirements to run the summarization scripts and data generation scripts by
pip install -r requirements.txt

Usage of PRIMER

  1. Download the pre-trained PRIMER model here to ./PRIMER_model
  2. Load the tokenizer and model by
from transformers import AutoTokenizer
from longformer import LongformerEncoderDecoderForConditionalGeneration
from longformer import LongformerEncoderDecoderConfig

tokenizer = AutoTokenizer.from_pretrained('./PRIMER_model/')
config = LongformerEncoderDecoderConfig.from_pretrained('./PRIMER_model/')
model = LongformerEncoderDecoderForConditionalGeneration.from_pretrained(
            './PRIMER_model/', config=config)

Make sure the documents separated with <doc-sep> in the input.

Summarization Scripts

You can use script/primer_main.py for pre-train/train/test PRIMER, and script/compared_model_main.py for train/test BART/PEGASUS/LED.

Pre-training Data Generation

Newshead: we crawled the newshead dataset using the original code, and cleaned up the crawled data, the final newshead dataset can be found here.

You can use utils/pretrain_preprocess.py to generate pre-training data.

  1. Generate data with scores and entities with --mode compute_all_scores
  2. Generate pre-training data with --mode pretraining_data_with_score:
    • Pegasus: --strategy greedy --metric pegasus_score
    • Entity_Pyramid: --strategy greedy_entity_pyramid --metric pyramid_rouge

Datasets

  • For Multi-News and Multi-XScience, it will automatically download from Huggingface.
  • WCEP-10: the preprocessed version can be found here
  • Wikisum: we only use a small subset for few-shot training(10/100) and testing(3200). The subset we used can be found here. Note we have significantly more examples than we used in train.pt and valid.pt, as we sample 10/100 examples multiple times in the few-shot setting, and we need to make sure it has a large pool to sample from.
  • DUC2003/2004: You need to apply for access based on the instruction
  • arXiv: you can find the data we used in this repo
Reinforcement-learning - Repository of the class assignment questions for the course on reinforcement learning

DSE 314/614: Reinforcement Learning This repository containing reinforcement lea

Manav Mishra 4 Apr 15, 2022
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
Automate issue discovery for your projects against Lightning nightly and releases.

Automated Testing for Lightning EcoSystem Projects Automate issue discovery for your projects against Lightning nightly and releases. You get CPUs, Mu

Pytorch Lightning 41 Dec 24, 2022
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Benjamin Biggs 29 Dec 28, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022