PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Overview

Box Convolution Layer for ConvNets


Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST

What This Is

This is a PyTorch implementation of the box convolution layer as introduced in the 2018 NeurIPS paper:

Burkov, E., & Lempitsky, V. (2018) Deep Neural Networks with Box Convolutions. Advances in Neural Information Processing Systems 31, 6214-6224.

How to Use

Installing

python3 -m pip install git+https://github.com/shrubb/box-convolutions.git
python3 -m box_convolution.test # if throws errors, please open a GitHub issue

To uninstall:

python3 -m pip uninstall box_convolution

Tested on Ubuntu 18.04.2, Python 3.6, PyTorch 1.0.0, GCC {4.9, 5.5, 6.5, 7.3}, CUDA 9.2. Other versions (e.g. macOS or Python 2.7 or CUDA 8 or CUDA 10) should work too, but I haven't checked. If something doesn't build, please open a Github issue.

Known issues (see this chat):

  • CUDA 9/9.1 + GCC 6 isn't supported due to a bug in NVCC.

You can specify a different compiler with CC environment variable:

CC=g++-7 python3 -m pip install git+https://github.com/shrubb/box-convolutions.git

Using

import torch
from box_convolution import BoxConv2d

box_conv = BoxConv2d(16, 8, 240, 320)
help(BoxConv2d)

Also, there are usage examples in examples/.

Quick Tour of Box convolutions

You may want to see our poster.

Why reinvent the old convolution?

3×3 convolutions are too small ⮕ receptive field grows too slow ⮕ ConvNets have to be very deep.

This is especially undesirable in dense prediction tasks (segmentation, depth estimation, object detection, ...).

Today people solve this by

  • dilated/deformable convolutions (can bring artifacts or degrade to 1×1 conv; almost always filter high-frequency);
  • "global" spatial pooling layers (usually too constrained, fixed size, not "fully convolutional").

How does it work?

Box convolution layer is a basic depthwise convolution (i.e. Conv2d with groups=in_channels) but with special kernels called box kernels.

A box kernel is a rectangular averaging filter. That is, filter values are fixed and unit! Instead, we learn four parameters per rectangle − its size and offset:

image

image

Any success stories?

One example: there is an efficient semantic segmentation model ENet. It's a classical hourglass architecture stacked of dozens ResNet-like blocks (left image).

Let's replace some of these blocks by our "box convolution block" (right image).

First we replaced every second block with a box convolution block (BoxENet in the paper). The model became

  • more accurate,
  • faster,
  • lighter
  • without dilated convolutions.

Then, we replaced every residual block (except the down- and up-sampling ones)! The result, BoxOnlyENet, is

  • a ConvNet almost without (traditional learnable weight) convolutions,
  • 2 times less operations,
  • 3 times less parameters,
  • still more accurate than ENet!
Comments
  • Build problem!

    Build problem!

    Hi! Can't compile pls see log https://drive.google.com/open?id=1U_0axWSgQGsvvdMWv5FclS1hHHihqx9M

    Command "/home/alex/anaconda3/bin/python -u -c "import setuptools, tokenize;file='/tmp/pip-req-build-n1eyvbz3/setup.py';f=getattr(tokenize, 'open', open)(file);code=f.read().replace('\r\n', '\n');f.close();exec(compile(code, file, 'exec'))" install --record /tmp/pip-record-p0dv1roq/install-record.txt --single-version-externally-managed --compile --user --prefix=" failed with error code 1 in /tmp/pip-req-build-n1eyvbz3/

    opened by aidonchuk 63
  • Implementation in VGG

    Implementation in VGG

    Hey,

    I am trying to implement box convolution for HED (Holistically-Nested Edge Detection) which uses VGG architecture. Here's the architecture with box convolution layer:

    class HED(nn.Module):
        def __init__(self):
            super(HED, self).__init__()
    
            # conv1
            self.conv1 = nn.Sequential(
                nn.Conv2d(3, 64, 3, padding=1),
                BoxConv2d(1, 64, 5, 5),
                nn.ReLU(inplace=True),
                nn.Conv2d(64, 64, 3, padding=1),
                #BoxConv2d(1, 64, 28, 28),
                nn.ReLU(inplace=True),
            )
    
            # conv2
            self.conv2 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/2
                nn.Conv2d(64, 128, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(128, 128, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            # conv3
            self.conv3 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/4
                nn.Conv2d(128, 256, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(256, 256, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(256, 256, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            # conv4
            self.conv4 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/8
                nn.Conv2d(256, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            # conv5
            self.conv5 = nn.Sequential(
                nn.MaxPool2d(2, stride=2, ceil_mode=True),  # 1/16
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
                nn.Conv2d(512, 512, 3, padding=1),
                nn.ReLU(inplace=True),
            )
    
            self.dsn1 = nn.Conv2d(64, 1, 1)
            self.dsn2 = nn.Conv2d(128, 1, 1)
            self.dsn3 = nn.Conv2d(256, 1, 1)
            self.dsn4 = nn.Conv2d(512, 1, 1)
            self.dsn5 = nn.Conv2d(512, 1, 1)
            self.fuse = nn.Conv2d(5, 1, 1)
    
        def forward(self, x):
            h = x.size(2)
            w = x.size(3)
    
            conv1 = self.conv1(x)
            conv2 = self.conv2(conv1)
            conv3 = self.conv3(conv2)
            conv4 = self.conv4(conv3)
            conv5 = self.conv5(conv4)
    
            ## side output
            d1 = self.dsn1(conv1)
            d2 = F.upsample_bilinear(self.dsn2(conv2), size=(h,w))
            d3 = F.upsample_bilinear(self.dsn3(conv3), size=(h,w))
            d4 = F.upsample_bilinear(self.dsn4(conv4), size=(h,w))
            d5 = F.upsample_bilinear(self.dsn5(conv5), size=(h,w))
    
            # dsn fusion output
            fuse = self.fuse(torch.cat((d1, d2, d3, d4, d5), 1))
    
            d1 = F.sigmoid(d1)
            d2 = F.sigmoid(d2)
            d3 = F.sigmoid(d3)
            d4 = F.sigmoid(d4)
            d5 = F.sigmoid(d5)
            fuse = F.sigmoid(fuse)
    
            return d1, d2, d3, d4, d5, fuse
    

    I get the following error: RuntimeError: BoxConv2d: all parameters must have as many rows as there are input channels (box_convolution_forward at src/box_convolution_interface.cpp:30)

    Can you help me with this?

    opened by Flock1 10
  • YOLO architecture

    YOLO architecture

    Hi,

    I want to know if there's some way I can create an architecture that'll work with YOLO. I've read a lot of implementations with pytorch but I don't know how should I modify the cfg file so that I can add box convolution layer.

    Let me know.

    opened by Flock1 9
  • Build Problem Windows 10 CUDA10.1 Python Bindings?

    Build Problem Windows 10 CUDA10.1 Python Bindings?

    Hi, I'm trying to compile the box-convolutions using Windows 10 with CUDA 10.1. This results in the following error:

    \python\python36\lib\site-packages\torch\lib\include\pybind11\cast.h(1439): error: expression must be a pointer to a complete object type
    
      1 error detected in the compilation of "C:/Users/CHRIST~1/AppData/Local/Temp/tmpxft_000010ec_00000000-8_integral_image_cuda.cpp4.ii".
      integral_image_cuda.cu
      error: command 'C:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v10.1\\bin\\nvcc.exe' failed with exit status 2
    
      ----------------------------------------
    Failed building wheel for box-convolution
    Running setup.py clean for box-convolution
    Failed to build box-convolution
    

    Any ideas? Thanks in advance

    opened by tom23141 6
  • Getting a cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.ci:250

    Getting a cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.ci:250

    Hello,

    I've been trying to implement your box convolution layer on a ResNet model by just substituting your BottleneckBoxConv layers for a typical ResNet Bottleneck layer.

    I was getting this error

    THCudaCheck FAIL file=src/box_convolution_cuda_forward.cu line=250 error=9 : invalid configuration argument
    Traceback (most recent call last):
      File "half_box_train.py", line 178, in <module>
        main()
      File "half_box_train.py", line 107, in main
        scores = res_net(x)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/dkang/Project/cs231n_project_box_convolution/models/HalfBoxResNet.py", line 331, in forward
         x = self.layer3(x)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/container.py", line 92, in forward
           input = module(input)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/home/dkang/Project/cs231n_project_box_convolution/models/HalfBoxResNet.py", line 66, in forward
        return F.relu(x + self.main_branch(x), inplace=True)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/container.py", line 92, in forward
    input = module(input)
      File "/opt/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 493, in __call__
        result = self.forward(*input, **kwargs)
      File "/opt/anaconda3/lib/python3.7/site-packages/box_convolution/box_convolution_module.py", line 222, in forward
        self.reparametrization_h, self.reparametrization_w, self.normalize, self.exact)
      File "/opt/anaconda3/lib/python3.7/site-packages/box_convolution/box_convolution_function.py", line 46, in forward
        input_integrated, x_min, x_max, y_min, y_max, normalize, exact)
    RuntimeError: cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.cu:250
    

    Thanks so much!

    opened by dkang9503 5
  • Speed and Efficiency of Depthwise separable operation?

    Speed and Efficiency of Depthwise separable operation?

    As far as modern libraries are concerned, there is not much support for depth-wise separable operations, i.e. we cannot write custom operations that can be done depthwise. Only convolutions are supported.

    How did you apply M box convolutions to each of the N input filters, to generate NM output filters? How is the different than using a for loop over the N input filters, applying M box convs on each one, and concatenating all the results?

    opened by kennyseb 5
  • Import Error

    Import Error

    Success build with ubuntu 16.04, cuda 10 and gcc 7.4. But import error encountered:

    In [1]: import torch
    
    In [2]: from box_convolution import BoxConv2d
    
    

    ImportError                               Traceback (most recent call last)
    <ipython-input-2-2424917dbf01> in <module>()
    ----> 1 from box_convolution import BoxConv2d
    
    ~/Software/pkgs/box-convolutions/box_convolution/__init__.py in <module>()
    ----> 1 from .box_convolution_module import BoxConv2d
    
    ~/Software/pkgs/box-convolutions/box_convolution/box_convolution_module.py in <module>()
          2 import random
          3 
    ----> 4 from .box_convolution_function import BoxConvolutionFunction, reparametrize
          5 import box_convolution_cpp_cuda as cpp_cuda
          6 
    
    ~/Software/pkgs/box-convolutions/box_convolution/box_convolution_function.py in <module>()
          1 import torch
          2 
    ----> 3 import box_convolution_cpp_cuda as cpp_cuda
          4 
          5 def reparametrize(
    
    ImportError: /usr/Software/anaconda3/lib/python3.6/site-packages/box_convolution_cpp_cuda.cpython-36m-x86_64-linux-gnu.so: undefined symbol: __cudaPopCallConfiguration
    

    @shrubb

    opened by the-butterfly 5
  • Error during forward pass

    Error during forward pass

         44         input_integrated = cpp_cuda.integral_image(input)
         45         output = cpp_cuda.box_convolution_forward(
    ---> 46             input_integrated, x_min, x_max, y_min, y_max, normalize, exact)
         47 
         48         ctx.save_for_backward(
    
    RuntimeError: cuda runtime error (9) : invalid configuration argument at src/box_convolution_cuda_forward.cu:249```
    opened by belskikh 5
  • Test script failed

    Test script failed

    Test script assertion failed:

    Random seed is 1546545757 Testing for device 'cpu' Running test_integral_image()... 100%|| 50/50 [00:00<00:00, 1491.15it/s] OK Running test_box_convolution_module()... 0%| python3: /pytorch/third_party/ideep/mkl-dnn/src/cpu/jit_avx2_conv_kernel_f32.cpp:567: static mkldnn::impl::status_t mkldnn::impl::cpu::jit_avx2_conv_fwd_kernel_f32::init_conf(mkldnn::impl::cpu::jit_conv_conf_t&, const convolution_desc_t&, const mkldnn::impl::memory_desc_wrapper&, const mkldnn::impl::memory_desc_wrapper&, const mkldnn::impl::memory_desc_wrapper&, const primitive_attr_t&): Assertion `jcp.ur_w * (jcp.nb_oc_blocking + 1) <= num_avail_regs' failed. Aborted (core dumped)

    Configuration: Ubuntu 16.04 LTS, CUDA 9.2, PyTorch 1.1.0, GCC 5.4.0.

    opened by vtereshkov 4
  • how box convolution works

    how box convolution works

    Hi,

    It is a nice work. In the first figure on your poster, you compared the 3x3 convolution layer and your box convolution layer. I am not clear how the box convolution works. Is it right that for each position (p,q) on the image, you use a box filter which has a relative position x, y to (p,q) and size w,h to calculate the value for (p,q) on the output? You learn the 4 parameters x, y, w, h for each box filter. For example, in the figure, the value for the red anchor pixel position on the output should be the sum of the values in the box. Is it correct? Thanks.

    opened by jiaozizhao 4
  • Multi-GPU Training: distributed error encountered

    Multi-GPU Training: distributed error encountered

    I am using https://github.com/facebookresearch/maskrcnn-benchmark for object detection, I want to use box convolutions, when I add a box convolution after some layer, training with 1 GPU is OK, while training with multiple GPUs in distributed mode failed, the error is very similar to this issue, I do not know how to fix, have some ideas? @shrubb

    2019-02-18 16:09:15,187 maskrcnn_benchmark.trainer INFO: Start training
    Traceback (most recent call last):
      File "tools/train_net.py", line 172, in <module>
        main()
      File "tools/train_net.py", line 165, in main
        model = train(cfg, args.local_rank, args.distributed)
      File "tools/train_net.py", line 74, in train
        arguments,
      File "/srv/data0/hzxubinbin/projects/maskrcnn_benchmark/maskrcnn-benchmark/maskrcnn_benchmark/engine/trainer.py", line 79, in do_train
        losses.backward()
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/tensor.py", line 102, in backward
        torch.autograd.backward(self, gradient, retain_graph, create_graph)
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/autograd/__init__.py", line 90, in backward
        allow_unreachable=True)  # allow_unreachable flag
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/nn/parallel/distributed.py", line 445, in distributed_data_parallel_hook
        self._queue_reduction(bucket_idx)
      File "/home/hzxubinbin/anaconda3.1812/lib/python3.7/site-packages/torch/nn/parallel/distributed.py", line 475, in _queue_reduction
        self.device_ids)
    TypeError: _queue_reduction(): incompatible function arguments. The following argument types are supported:
        1. (process_group: torch.distributed.ProcessGroup, grads_batch: List[List[at::Tensor]], devices: List[int]) -> Tuple[torch.distributed.Work, at::Tensor]
    
    Invoked with: <torch.distributed.ProcessGroupNCCL object at 0x7f0d95248148>, [[tensor([[[[0.]],
    

    1 GPU is too slow, I want to use multiple GPUs

    opened by freesouls 4
  • How can I run Cityscapes example on a test set?

    How can I run Cityscapes example on a test set?

    Hello, collegues! I've trained BoxERFNet, and now I wanna run this model on a test set to evaluate it. I checked the source code(train.py) and established 'test' in place of 'test' in 80th string. But there was falure, the evaluated metrics were incorrect(e.g. 0.0 and 0.0). Can you explain me, what I need to do to evaluate model on a test set? I guess that problem is on 'validate' function(241th string), because confusion_matrix_update(268th string) tensors are really different in test and val sets.

    opened by mikhailkonyk 3
Releases(v1.0.0)
Owner
Egor Burkov
Egor Burkov
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
Pyramid Pooling Transformer for Scene Understanding

Pyramid Pooling Transformer for Scene Understanding Requirements: torch 1.6+ torchvision 0.7.0 timm==0.3.2 Validated on torch 1.6.0, torchvision 0.7.0

Yu-Huan Wu 119 Dec 29, 2022
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations, CVPR 2019 (Oral)

Weakly Supervised Learning of Instance Segmentation with Inter-pixel Relations The code of: Weakly Supervised Learning of Instance Segmentation with I

Jiwoon Ahn 472 Dec 29, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022