OpenDILab RL Kubernetes Custom Resource and Operator Lib

Overview

DI Orchestrator

DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator.

Prerequisites

  • A well-prepared kubernetes cluster. Follow the instructions to create a kubernetes cluster, or create a local kubernetes node referring to kind or minikube
  • Cert-manager. Installation on kubernetes please refer to cert-manager docs. Or you can install it by the following command.
kubectl create -f ./config/certmanager/cert-manager.yaml

Install DI Orchestrator

DI Orchestrator consists of two components: di-operator and di-server. Install di-operator and di-server with the following command.

kubectl create -f ./config/di-manager.yaml

di-operator and di-server will be installed in di-system namespace.

$ kubectl get pod -n di-system
NAME                               READY   STATUS    RESTARTS   AGE
di-operator-57cc65d5c9-5vnvn   1/1     Running   0          59s
di-server-7b86ff8df4-jfgmp     1/1     Running   0          59s

Install global components of DIJob defined in AggregatorConfig:

kubectl create -f config/samples/agconfig.yaml -n di-system

Submit DIJob

# submit DIJob
$ kubectl create -f config/samples/dijob-cartpole.yaml

# get pod and you will see coordinator is created by di-operator
# a few seconds later, you will see collectors and learners created by di-server
$ kubectl get pod

# get logs of coordinator
$ kubectl logs cartpole-dqn-coordinator

User Guide

Refers to user-guide. For Chinese version, please refer to 中文手册

Contributing

Refers to developer-guide.

Contact us throw [email protected]

Comments
  • 在 Pod 内增加集群信息

    在 Pod 内增加集群信息

    希望以 dijob replica 方式提交时,每个 pod 都能见到整个 replica 的 host 信息和自己的启动顺序,增加以下几个环境变量:

    1. replica 中所有 pod 的 FQDN,依据启动顺序排序
    2. 当前 pod 的 FQDN
    3. 当前 pod 的顺序编号

    DI-engine 中会根据这些变量实现对应的网络连接,attach-to 的生成逻辑可以从 di-orchestrator 中移除

    enhancement 
    opened by sailxjx 3
  • add tasks to dijob spec

    add tasks to dijob spec

    1. goal

    There is only one pod template defined in a dijob, which results in that we can not define different commands or resources for different componets of di-engine such as collector, learner and evaluator. So we are supposed to find a more general way to define a custom resource of dijob.

    2. design *

    Inspired by VolcanoJob, we define the spec.tasks to describe different componets of di-engine. spec.tasks is a list, which allows us to define multiple tasks. We can specify different task.type to label the task as one of collector, learner, evaluator and none. none means the task is a general task, which is the default value.

    After change, the dijob can be defined as follow:

    apiVersion: diengine.opendilab.org/v2alpha1
    kind: DIJob
    metadata:
      name: job-with-tasks
    spec:
      priority: "normal"  # job priority, which is a reserved field for allocator
      backoffLimit: 0  # restart count
      cleanPodPolicy: "Running"  # the policy to clean pods after job completion
      preemptible: false  # job is preemtible or not
      minReplicas: 2  
      maxReplicas: 5
      tasks:
      - replicas: 1
        name: "learner"
        type: learner
        template:
          metadata:
            name: di
          spec:
            containers:
            - image: registry.sensetime.com/xlab/ding:nightly
              imagePullPolicy: IfNotPresent
              name: pydi
              env:
              - name: NCCL_DEBUG
                value: "INFO"
              command: ["/bin/bash", "-c",]
              args: 
              - |
                ditask --label learner xxx
              resources:
                requests:
                  cpu: "1"
                  nvidia.com/gpu: 1
            restartPolicy: Never
      - replicas: 1
        name: "evaluator"
        type: evaluator
        template:
          metadata:
            name: di
          spec:
            containers:
            - image: registry.sensetime.com/xlab/ding:nightly
              imagePullPolicy: IfNotPresent
              name: pydi
              env:
              - name: NCCL_DEBUG
                value: "INFO"
              command: ["/bin/bash", "-c",]
              args: 
              - |
                ditask --label evaluator xxx
            restartPolicy: Never
      - replicas: 2
        name: "collector"
        type: collector
        template:
          metadata:
            name: di
          spec:
            containers:
            - image: registry.sensetime.com/xlab/ding:nightly
              imagePullPolicy: IfNotPresent
              name: pydi
              env:
              - name: NCCL_DEBUG
                value: "INFO"
              command: ["/bin/bash", "-c",]
              args: 
              - |
                ditask --label collector xxx
            restartPolicy: Never
    status:
      conditions:
      - lastTransitionTime: "2022-05-26T07:25:11Z"
        lastUpdateTime: "2022-05-26T07:25:11Z"
        message: job created.
        reason: JobPending
        status: "False"
        type: Pending
      - lastTransitionTime: "2022-05-26T07:25:11Z"
        lastUpdateTime: "2022-05-26T07:25:11Z"
        message: job is starting since all pods are created.
        reason: JobStarting
        status: "False"
        type: Starting
      phase: Starting
      profilings: {}
      readyReplicas: 0
      replicas: 4
      taskStatus:
        learner:
          Pending: 1
        evaluator:
          Pending: 1
        collector:
          Pending: 2
      reschedules: 0
      restarts: 0
    

    task definition:

    type Task struct {
    	Name string `json:"name,omitempty"`
    
    	Type TaskType `json:"type,omitempty"`
    
    	Replicas int32 `json:"replicas,omitempty"`
    
    	Template corev1.PodTemplateSpec `json:"template,omitempty"`
    }
    
    type TaskType string
    
    const (
    	TaskTypeLearner TaskType = "learner"
    
    	TaskTypeCollector TaskType = "collector"
    
    	TaskTypeEvaluator TaskType = "evaluator"
    
    	TaskTypeNone TaskType = "none"
    )
    
    

    status.taskStatus definition:

    type DIJobStatus struct {
      // Phase defines the observed phase of the job
      // +kubebuilder:default=Pending
      Phase Phase `json:"phase,omitempty"`
    
      // ...
      
      // map for different task statuses. key: task.name, value: TaskStatus
      TaskStatus map[string]TaskStatus
    
      // ...
    }
    
    // count of different pod phases
    type TaskStatus map[corev1.PodPhase]int32
    
    enhancement 
    opened by konnase 1
  • new version for di-engine new architecture

    new version for di-engine new architecture

    release notes

    features

    • v1.0.0 for DI-engine new architecture
    • remove webhook
    • manage commands with cobra
    • refactor orchestrator architecture inspired from adaptdl
    • use gin to rewrite di-server
    • update di-server http interface
    enhancement 
    opened by konnase 1
  • v0.2.0

    v0.2.0

    • [x] split webhook and operator
    • [x] add dockerfile.dev
    • [x] update CleanPolicyALL to CleanPolicyAll
    • [x] remove k8s service related operations from server, and operator is responsible for managing services
    • [x] add e2e test
    enhancement 
    opened by konnase 1
  • refactor job spec

    refactor job spec

    • refactor job spec definition and add spec.tasks to support multi tasks #20
    • add DI_RANK to pod env and remove engineFields in job.spec #16
    • add e2e test
    • add validator to validate the correctness of dijob spec
    • change job.phase to Pending when job replicas scaled to 0
    • implement a processor to process di-server requests
    • refactor project structure
    enhancement 
    opened by konnase 0
  • Release/v1.0

    Release/v1.0

    release notes

    features

    • v1.0.0 for DI-engine new architecture
    • remove webhook
    • manage commands with cobra
    • refactor orchestrator architecture inspired from adaptdl
    • use gin to rewrite di-server
    • update di-server http interface
    enhancement 
    opened by konnase 0
  • fix: job failed submit when collector/learner missed

    fix: job failed submit when collector/learner missed

    job failed submit when collector/learner missed because webhook create an empty dijob, and golang builder add some default value to some feilds of collector/learner, which result in invalid type error. solved by make coordinator/collector/learner as pointers.

    bug 
    opened by konnase 0
  • Feat/job create event

    Feat/job create event

    • add event handler for dijob, and mark job as Created when job submitted
    • mark collector and learner as optional, only coordinator is required(https://github.com/opendilab/DI-orchestrator/pull/13/commits/653e64af01ec7752b08d4bf8381738d566fca224)
    • mark job Failed when the submitted job is incorrect(https://github.com/opendilab/DI-orchestrator/pull/13/commits/bea840a5eee3508be18b53b325168a5647daff94), but it's hard to test since client-go reflector decodes DIJob strictly, we have no chance to handle DIJob add event when incorrect job submitted
    • version -> v0.2.1
    enhancement 
    opened by konnase 0
  • allocate的一些问题

    allocate的一些问题

    1.目前的allocator的逻辑,对于不可被抢占的job的初始分配,仅利用minreplicas修改replicas属性,那job的pods部署到哪个节点是完全由K8S决定吗?而且Release1.13代码的allocator.go中对不可被抢占job的初始分配部分貌似还没有写。 2.job是否可以被抢占的含义具体是什么?和是否能被调度是不是等价的? 3.调度策略的FitPolicy的Allocate和Optimize方法也没有进行实现,这部分内容什么时候可以补充? 4.文档中存在许多与最新代码不符合的地方,比如DIJob.Spec.Group属性在代码中已经被移除,文档中提到的job.spec.minreplicas属性代码中也没有,而是在JobInfo中。可以更新一下文档吗? 感谢!

    opened by RZ-Q 3
Releases(v1.1.3)
  • v1.1.3(Aug 22, 2022)

  • v1.1.2(Jul 21, 2022)

    bugs fix

    • global cmd flag error(https://github.com/opendilab/DI-orchestrator/pull/23)
    • wrong pod subdomain(https://github.com/opendilab/DI-orchestrator/pull/24)
    • incorrect to get global rank(https://github.com/opendilab/DI-orchestrator/pull/25)
    Source code(tar.gz)
    Source code(zip)
    di-manager.yaml(445.36 KB)
  • v1.1.1(Jul 4, 2022)

  • v1.1.0(Jun 30, 2022)

    • refactor job spec definition and add spec.tasks to support multi tasks #20
    • add DI_RANK to pod env and remove engineFields in job.spec #16
    • add e2e test
    • add validator to validate the correctness of dijob spec
    • change job.phase to Pending when job replicas scaled to 0
    • implement a processor to process di-server requests
    • refactor project structure

    see details in https://github.com/opendilab/DI-orchestrator/pull/21

    Source code(tar.gz)
    Source code(zip)
    di-manager.yaml(374.01 KB)
  • v1.0.0(Mar 23, 2022)

  • v0.2.2(Dec 15, 2021)

  • v0.2.1(Oct 12, 2021)

    feature

    • add event handler for dijob, and mark job as Created when job submitted(https://github.com/opendilab/DI-orchestrator/pull/13)
    • mark collector and learner as optional, only coordinator is required(https://github.com/opendilab/DI-orchestrator/pull/13/commits/653e64af01ec7752b08d4bf8381738d566fca224)
    • mark job Failed when the submitted job is incorrect(https://github.com/opendilab/DI-orchestrator/pull/13/commits/bea840a5eee3508be18b53b325168a5647daff94), but it's hard to test since client-go reflector decodes DIJob strictly, we have no chance to handle DIJob add event when incorrect job submitted
    Source code(tar.gz)
    Source code(zip)
    di-manager.yaml(1.38 MB)
  • v0.2.0(Sep 28, 2021)

  • v0.2.0-rc.0(Sep 6, 2021)

    • split webhook and operator
    • add dockerfile.dev
    • update CleanPolicyALL to CleanPolicyAll
    • remove k8s service related operations from server, and operator is responsible for managing services
    • add e2e test
    Source code(tar.gz)
    Source code(zip)
  • v0.1.0(Jul 8, 2021)

    Features

    • Define DIJob CRD to support DI jobs' submission
    • Define AggregatorConfig CRD to support aggregator definition
    • Add webhook to validate DIJob submission
    • Provide http service for DI jobs to request for DI modules
    • Docs to introduce DI-orchestrator architecture
    Source code(tar.gz)
    Source code(zip)
Owner
OpenDILab
Open sourced Decision Intelligence (DI)
OpenDILab
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
基于PaddleOCR搭建的OCR server... 离线部署用

开头说明 DangoOCR 是基于大家的 CPU处理器 来运行的,CPU处理器 的好坏会直接影响其速度, 但不会影响识别的精度 ,目前此版本识别速度可能在 0.5-3秒之间,具体取决于大家机器的配置,可以的话尽量不要在运行时开其他太多东西。需要配合团子翻译器 Ver3.6 及其以上的版本才可以使用!

胖次团子 131 Dec 25, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

[Paper] [Project page] This repository contains code for the paper: Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Mu

Andrew Owens 202 Dec 13, 2022
HandTailor: Towards High-Precision Monocular 3D Hand Recovery

HandTailor This repository is the implementation code and model of the paper "HandTailor: Towards High-Precision Monocular 3D Hand Recovery" (arXiv) G

Lv Jun 113 Jan 06, 2023