PyContinual (An Easy and Extendible Framework for Continual Learning)

Overview

PyContinual (An Easy and Extendible Framework for Continual Learning)

Easy to Use

You can sumply change the baseline, backbone and task, and then ready to go. Here is an example:

	python run.py \  
	--bert_model 'bert-base-uncased' \  
	--backbone bert_adapter \ #or other backbones (bert, w2v...)  
	--baseline ctr \  #or other avilable baselines (classic, ewc...)
	--task asc \  #or other avilable task/dataset (dsc, newsgroup...)
	--eval_batch_size 128 \  
	--train_batch_size 32 \  
	--scenario til_classification \  #or other avilable scenario (dil_classification...)
	--idrandom 0  \ #which random sequence to use
	--use_predefine_args #use pre-defined arguments

Easy to Extend

You only need to write your own ./dataloader, ./networks and ./approaches. You are ready to go!

Introduction

Recently, continual learning approaches have drawn more and more attention. This repo contains pytorch implementation of a set of (improved) SoTA methods using the same training and evaluation pipeline.

This repository contains the code for the following papers:

Features

  • Datasets: It currently supports Language Datasets (Document/Sentence/Aspect Sentiment Classification, Natural Language Inference, Topic Classification) and Image Datasets (CelebA, CIFAR10, CIFAR100, FashionMNIST, F-EMNIST, MNIST, VLCS)
  • Scenarios: It currently supports Task Incremental Learning and Domain Incremental Learning
  • Training Modes: It currently supports single-GPU. You can also change it to multi-node distributed training and the mixed precision training.

Architecture

./res: all results saved in this folder.
./dat: processed data
./data: raw data ./dataloader: contained dataloader for different data ./approaches: code for training
./networks: code for network architecture
./data_seq: some reference sequences (e.g. asc_random) ./tools: code for preparing the data

Setup

  • If you want to run the existing systems, please see run_exist.md
  • If you want to expand the framework with your own model, please see run_own.md
  • If you want to see the full list of baselines and variants, please see baselines.md

Reference

If using this code, parts of it, or developments from it, please consider cite the references bellow.

@inproceedings{ke2021achieve,
  title={Achieving Forgetting Prevention and Knowledge Transfer in Continual Learning},
  author={Ke, Zixuan and Liu, Bing and Ma, Nianzu and Xu, Hu, and Lei Shu},
  booktitle={NeurIPS},
  year={2021}
}

@inproceedings{ke2021contrast,
  title={CLASSIC: Continual and Contrastive Learning of Aspect Sentiment Classification Tasks},
  author={Ke, Zixuan and Liu, Bing and Xu, Hu, and Lei Shu},
  booktitle={EMNLP},
  year={2021}
}

@inproceedings{ke2021adapting,
  title={Adapting BERT for Continual Learning of a Sequence of Aspect Sentiment Classification Tasks},
  author={Ke, Zixuan and Xu, Hu and Liu, Bing},
  booktitle={Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies},
  pages={4746--4755},
  year={2021}
}

@inproceedings{ke2020continualmixed,
author= {Ke, Zixuan and Liu, Bing and Huang, Xingchang},
title= {Continual Learning of a Mixed Sequence of Similar and Dissimilar Tasks},
booktitle = {Advances in Neural Information Processing Systems},
volume={33},
year = {2020}}

@inproceedings{ke2020continual,
author= {Zixuan Ke and Bing Liu and Hao Wang and Lei Shu},
title= {Continual Learning with Knowledge Transfer for Sentiment Classification},
booktitle = {ECML-PKDD},
year = {2020}}

Contact

Please drop an email to Zixuan Ke, Xingchang Huang or Nianzu Ma if you have any questions regarding to the code. We thank Bing Liu, Hu Xu and Lei Shu for their valuable comments and opinioins.

This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
[NeurIPS'20] Multiscale Deep Equilibrium Models

Multiscale Deep Equilibrium Models 💥 💥 💥 💥 This repo is deprecated and we will soon stop actively maintaining it, as a more up-to-date (and simple

CMU Locus Lab 221 Dec 26, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
Cockpit is a visual and statistical debugger specifically designed for deep learning.

Cockpit: A Practical Debugging Tool for Training Deep Neural Networks

Felix Dangel 421 Dec 29, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

Chris Nota 5 Aug 30, 2022